No. of Printed Pages : 4

ET-536(B)

B.Tech. CIVIL (WATER RESOURCES ENGINEERING)

Term-End Examination

June, 2013

ET-536(B) : HYDRAULIC STRUCTURES-II

Time : 3 hours

00034

Maximum Marks : 70

Note : Attempt any seven questions. Each question carries equal marks. Use of scientific calculator is permitted. Assume any missing data suitably.

1.	(a)	What do you understand by the terms permanent and inundation canals ? How inundation canals are cost-effective ?	5
	(b)	How can an irrigation canal be utilised to develop hydro-electric power ? What are the requisite features of the area that must exist for this purpose ?	5
2.	(a)	What do you understand by contour canals, water shed canals and side slope canals"?	5
	(b)	Write short notes on <i>any two</i> of the following : 2x2 ¹ / ₂ (i) Berm Width (ii) Free-Board (iii) Top width	=5
		(iii) Top width	

ET-536(B)

- 3. (a) Discuss the factors influencing the choice 5 of an open aqueduct. How do syphon aqueducts differ from ordinary aqueducts?
 - (b) What are the considerations for selecting a 5 suitable type of cross drainage works ?Discuss with reference to a given site.
- 4. (a) Bring out the limitations of Kennedy's and 4
 Lacey's silt theories; and explain their implications.
 - (b) Design an irrigation channel to supply 6

30 cumec of water at a slope of $\frac{1}{6000}$ With Kutter's N = 0.0225 and m = 0.95 using Kennedy's theory.

- 5. Design a concrete lined channel having a 10 trapezoidal section for the following data :
 Discharge = 30 cumec
 Bed slope = 1 in 9000
 Side slope of channel = 1.25 : 1 (H : V)
 Depth of channel restricted to 4m
 Adopt Manning's n = 0.012
- 6. (a) What are the sluices and where are they 4 provided ?

ET-536(B)

2

- (b) A water course is to take a flow of 0.04
 6 cumec. Design an open flume out let from the concerned distributary if the full supply depth in the distributary = 0.70m.
- 7. (a) What are the objectives of a distribution 4 system ? What do you understand by control of a distribution system ?
 - (b) Write a detailed description and working 6 of the block system of water distribution ?
- 8. (a) Why is a cistern element needed and where 4 is it located on a canal fall ?
 - (b) Given H = 1m, d = 10cm, f = 0.012
 6 L = 3m, Determine the discharging capacity of the pipe drop spillway.
- (a) Describe the design criteria for cross 5
 regulators giving the reasons. Distinguish
 between a head regulator and a cross regulator.
 - (b) Discuss the methods available for 5 controlling entry of silt into a canal. What causes distributary channels to draw excessive silt ?

ET-536(B)

P.T.O.

3

- 10. (a) What particular river training measures are
required for the following ? Explain any two
with examples. $2x2^{1/2}=5$
 - (i) guiding the flow near hydraulic structures
 - (ii) sediment control
 - (iii) Stabilisation of a river channel
 - (b) What are the criteria for determining 5 channel dimentions for navigation ?
 Explain how these have been applied in any field situation.