B.TECH. CIVIL (WATER RESOURCES ENGINEERING)

Term-End Examination
June, 2013

ET-533(B) : OPEN CHANNEL FLOW

Time : 3 hours
Maximum Marks : 70
Note: Attempt any five questions. All question carry marks as indicated. Use of calculator is permitted. Assume appropriate data if not given.

1. (a) Why is the flow necessarily non - uniform
in a channel of zero bed slope?
(b) Classify the following flows as uniform, 5 gradually varied, rapidly varied, specially varied or unsteady flow with reasons :
(i) Flow upstream of a dam.
(ii) Progress of a tidal wave in an estuary
(iii) Flow in a unlined canal considering evaporation and seepage losses
(iv) Flow near an ungated end of a laboratory flume.
(v) Flow over a weir.
(c) Given a trapezoidal channel with a bottom width of 3.3 m , side slope of $1.5: 1$, a longitudinal slope of 0.0016 and an estimated value of $n=0.13$, find the normal depths of flow at a discharge of $8 \mathrm{~m}^{3} / \mathrm{sec}$.
2. (a) Show that the relation between the alternate depths in a rectangular channel is $\left(2 h_{1}{ }^{2} h_{2}^{2}\right) /\left(h_{1}+h_{2}\right)=h^{3} C$
(b) A sewer pipe is proposed to be laid on a 7 slope of 1 in 2500 and is required to carry $1.5 \mathrm{~m}^{3} / \mathrm{sec}$. What size of a circular pipe should be used if it has to flow halffull? Assume $n=0.015$.
3. (a) Classify and characterise the various water surface profiles obtained in steady gradually varied flow in a prismatic channel.
(b) Sketch the possible GVF profiles in the 6 following serial arrangement of channels and controls. The flow is from left to right.
(i) Mild slope followed by a milder slope and a steep slope
(ii) Mild slope followed by a short horizontal channel and a steep slope
(iii) Steep slope followed by a critical slope and a mild slope.
4. (a) The normal depth of flow of water in a 1.5 m wide rectangular channel is 1.0 m . The bed slope of the channel is 0.0006 and mannig's roughness coefficient $n=0.012$. Find the critical depth. At a certain section of the same channel the depth is 0.92 m while at a second section the depth is 0.86 m . Find the distance between the two sections (use one reach in the calculation). Also find whether the section is located d / s or u / s with respect to the first section.

$$
2+6+1=9
$$

(b) Briefly compare Direct step method and 5 standard step method for computation of water surface profile.
5. (a) Discuss the circumstances which may lead 7 to the formation of surge waves in an open channel.
(b) A rectangular channel carries a flow at a 7 depth of 2.5 m with a velocity of $2.0 \mathrm{~m} / \mathrm{sec}$. The flow is suddenly quadrupled, due to an arrangement on the downstream side by an abrupt opening of a head gates. What is the type of the resulting surge ? Determine the final depth of flow, height of the surge, celerity, wave spead and over run.
6. (a) Show that the froude number F_{1} and F_{2} in a hydraulic jump occurring in a rectangular channel are related by :

$$
4+4=8
$$

(i) $\mathrm{F}_{2}^{2}=\left(8 \mathrm{~F}_{1}^{2}\right) /\left(-1+\sqrt{1+8 \mathrm{~F}_{1}^{2}}\right)^{3}$
(ii) $\quad \mathrm{F}_{1}{ }^{2}=\left(8 \mathrm{~F}_{2}\right)^{2} /\left(-1+\sqrt{1+8 \mathrm{~F}_{2}^{2}}\right)^{3}$
(b) A discharge of $15 \mathrm{~m}^{3} / \mathrm{sec}$ flows with a depth 6 of 1.5 m in a rectangular channel 5 m wide. At a down stream section the width is reduced to 4.5 m and the channel bed is raised by Δz. What will be the state of water surface elevation in the transition when $\Delta z=0.10 \mathrm{~m}$?
7. (a) Enlist the forces that act on a structure due 7 to wave action.
(b) Discuss the method of characteristic.

7
8. Write short notes on any four of the following :
(a) Hydraulic jump
$4 \times 31 / 2=14$
(b) Channel Transitions
(c) Dam break problem
(d) Momentum principle
(e) Wave spectrum
(f) Surges and their classification
(g) Morrison's equation and its significance
(h) Wave force on structures.

