B.Tech. Civil (Construction Management) /

B.Tech. Civil (Water Resources Engineering)

Term-End Examination
June, 2013

ET-508(B) : STRUCTURAL DESIGN-II

Time : 3 hours
Maximum Marks : 70
Note: Attempt any four questions. All questions carry equal marks. Use of steel table, IS : 800 and calculator is allowed. Assume any missing data suitably.

1. Find the safe load that can be transmitted by the $171 / 2$ fillet welded joint as shown in figure - 1. The size of the weld is 6 mm .

Fig. 1
2. A tension member consisting of two ISA $17 \frac{1}{2}$
$150 \times 115 \times 10 \mathrm{~mm}$ angles are connected by their long legs to a gusset plate by means of 20 mm diameter rivets in suck. a way that each angle section is reduced by one rivet hole only.
Determine the tensile strength of the member when the angles are connected on the same side of a 12 mm gusset plate and tack riveted.
3. Design a built up column using lacing to carry an $17^{1 / 2}$ axial load of 1200 kN . It's length is 8 m and it is effectively held in position and restrained against rotation at one end. Assume a yield stress of 250 MPa .

Take permissible compressive stress $=120 \mathrm{MPa}$.
4. A simply supported beam of span 9 m is carrying $17^{1 / 2}$ a uniformly distributed Load of $37.5 \mathrm{kN} / \mathrm{m}$. Design a beam using standard I-sections, if the compression flange of the beam is laterally supported throughout its length.
5. A column consisting of ISHB $400 @ 822 \mathrm{~N} / \mathrm{m} 171 / 2$ carries an axial load of 400 kN . Design the column splices when the ends of the column are milled and faced for bearing. Take $f y=250 \mathrm{~N} / \mathrm{mm}^{2}$.
6. Design an I - section purlin using sag bars for a $17^{1 / 2}$ trussed roof from the following data:
Span of roof $=12 \mathrm{~m}$
Spacing of trusses $=5 \mathrm{~m}$
Spacing of purlins along slope of roof truss $=2 \mathrm{~m}$
Slope of roof truss $=1$ vertical : 2 horizontal.
Wind load on roof surface normal to
roof $=1000 \mathrm{~N} / \mathrm{m}^{2}$.
Vertical load from roof sheets etc. $=200 \mathrm{~N} / \mathrm{m}^{2}$.

