B.Tech. Civil (Construction Management) /
 B. Tech. Civil (Water Resources Engineering)

Term-End Examination
June, 2013
00285

ET-502(A) : STRENGTH OF MATERIALS

Time : 3 hours
Maximum Marks : 70

Note: Answer any five questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) A rod, 150 cm long and of 2.0 cm diameter, 7 is subjected to an axial pull of 20 kN . If the modulus of elasticity of the material of the rod is $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$; determine :
(i) the stress,
(ii) the strain, and
(iii) the elongation of the rod.
(b) An axial pull of 35000 N is acting on a bar 7 consisting of three lengths as shown in Figure 1. If the Young's Modulus $=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, determine :
(i) Stresses in each section and
(ii) total extension of the bar.

Figure - 1
2. (a) A rod is 2 m long at a temperature of $10^{\circ} \mathrm{C}$.

Find the expansion of the rod, when the temperature is raised to $80^{\circ} \mathrm{C}$. If this expansion is prevented, find the stress induced in the material of the rod. Take.
$\mathrm{E}=1.0 \times 10^{5} \mathrm{MN} / \mathrm{m}^{2}$ and $\alpha=0.000012$ per degree centigrade.
(b) A metallic bar $300 \mathrm{~mm} \times 100 \mathrm{~mm} \times 40 \mathrm{~mm}$ is subjected to a force of 5 kN (tensile), 6 kN (tensile) and 4 kN (tensile)

Figure - 2
along x, y and z directions respectively. Determine the change in the volume of the block. Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio $=0.25$.
3. (a) At a point in a strained material the principal stresses are $100 \mathrm{~N} / \mathrm{mm}^{2}$, (tensile) and $60 \mathrm{~N} / \mathrm{mm}^{2}$ (compressive). Determine the normal stress, shear stress, and resultant stress on a plane inclined at 50° to the axis of major principle stress. Also determine the maximum shear stress at the point.
(b) Direct stresses of $120 \mathrm{~N} / \mathrm{mm}^{2}$ tensile and 7 $90 \mathrm{~N} / \mathrm{mm}^{2}$ compression exist on two perpendicular planes at a certain point in a body. They are also accompanies by shear stress on the planes. The greatest principle stress at the point due to these is $150 \mathrm{~N} / \mathrm{mm}^{2}$.
(i) What must be the magnitude of the shearing stresses on the two planes ?
(ii) What will be the maximum shearing stress at the point?
4. (a) A bar of uniform cross - section ' A ', and 7 length 'L' hangs vertically, subjected to its own weight.
Prove that the strain energy stored within the bar is given by :

$$
\mathrm{U}=\frac{\mathrm{A} \times \rho^{2} \times \mathrm{L}^{3}}{6 \mathrm{E}} \text { Where } \mathrm{E}=\text { Modulus of }
$$

Elasticity $\rho=$ Weight per unit volume of the bar.
(b) A solid shaft of 150 mm diameter is used to transmit torque. Find the maximum torque transmitted by the shaft if the maximum shear stress induced to the shaft is $45 \mathrm{~N} / \mathrm{mm}^{2}$.
8. (a) A solid steel shaft has to transmit 75 kW at 200 rpm . Taking allowable shear stress as $70 \mathrm{~N} / \mathrm{mm}^{2}$, find suitable diameter for the shaft, if the maximum torque transmitted at each revolution exceeds the mean by 30%.
(b) A cylindrical shell 3 m long which is closed at the ends has an internal diameter of 1 m and a wall thickness of 15 cm . Calculate the circumferential and longitudinal stresses induced, if it is subjected to an internal pressure of $1.5 \mathrm{~N} / \mathrm{mm}^{2}$.
(b) A cage weighing 60 kN is attached to the end of a steel wire rope. It is lowered down a mine shaft with a constant velocity of $1 \mathrm{~m} / \mathrm{sec}$. What is the maximum stress produced in the rope when its supporting drum is suddenly jammed? The free length of the rope at the moment of jamming is 15 m , its net cross - sectional area is $25 \mathrm{~cm}^{2}$ and $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. The self weight of the wire rope may be neglected.
5. (a) A simply supported beam of length 6 m ,

Figure-3
Carries point load of 3 kN and 6 kN at distances of 2 m , and 4 m from the left end. Draw the shear force and bending moment diagrams for the beam.
(b) Draw the shear force and bending moment diagrams for the over - hanging beam carrying uniformly distributed load of $2 \mathrm{kN} / \mathrm{m}$ over the entire length as shown in Figure 4. Also locate the point of contraflexture.

Figure - 4
6. (a) A steel plate of width 120 mm and of thickness 20 mm is bent into a circular arc of radius 10 m . Determine the maximum stress induced and the bending moment which will produce the maximum stress. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(b) A reactangular beam 100 mm wide and 250 mm deep is subjected to a maximum shear force of 50 kN .
Determine :
(i) Average shear stress,
(ii) Maximum shear stress, and
(iii) Shear stress at a distance of 25 mm above the neutral axis.
7. (a) A pin jointed truss of 9 m is loaded as shown in Figure 5. Find the forces in the members of the truss.

Figure - 5

