B.Tech. Civil (Construction Management) /

 B.Tech. Civil (Water Resources Engineering)Term-End Examination
June, 2013

ET-302(A) : COMPUTER PROGRAMMING AND NUMERICAL ANALYSIS

Time : 3 hours
Maximum Marks : 70
Note: Attempt any five questions. All questions carry equal marks. Use of Scientific calculator is permitted.

1. (a) If 0.667 is the approximate value of $\frac{2}{3}$, find $7+7$
the absolute, relative and percentage errors.
(b) Solve $3 x+\sin x-\mathrm{e}^{x}=0$, correct to 4 decimal places using Newton - Raphson method.
2. (a) Find a real root of the following equation $7+7$ $x=0.21 \sin (0.5+x)$
by iteration method with the approximate root as 0.1.
(b) Solve the following simultaneous equations using Gauss' elimination method.
$x+y+z=6$
$3 x+3 y+4 z=20$
$2 x+y+3 z=13$
3. (a) Solve the following systems of equation by $7+7$ using Jocabi's iteration method.

$$
\begin{aligned}
& 13 x_{1}+5 x_{2}-3 x_{3}=14 \\
& 2 x_{1}+12 x_{2}+x_{3}=29 \\
& 3 x_{1}-4 x_{2}+10 x_{3}=25
\end{aligned}
$$

(b) By using the Regula - Falsi method, find the root, correct to 3 decimal places of the equation
$x \log _{10} x=1.2$
that lies between 2 and 3 .
4. (a) Use Lagrange's interpolation formula to $7+7$ compute $f(27)$ from the given data :

$x:$	14	17	31	35
$f(x):$	68.7	64.0	44.0	39.1

(b) Evaluate $\int_{0}^{1} \mathrm{e}^{x} \mathrm{~d} x$ approximately in steps of 0.2 using trapezoidal rule.
5. (a) Given three numbers A, B and C, write a $7+7$

FORTRAN programme to write their values in an ascending order.
(b) Write a FORTRAN programme to sum the sequence
$1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots \ldots \ldots .+\frac{1}{100!}$
6. (a) Write a FORTRAN programme that gives $7+7$ the user the option of converting Fahrenheit to Celsius or Celsius to Fahrenheit and depending upon user's choice carries out the conversion.
(b) Write a C^{++}programme to input a number. If the number n is odd and positive, print its square root otherwise print n^{3}.
7. (a) Write a FORTRAN programme to calculate the roots of a quadratic equation $a x^{2}+b x+c=0$.
(b) Write a FORTRAN programme to subtract two matrices.
8. (a) Write a FORTRAN programme to calculate $7+7$ the sum of the series, taking input as x and N .

SUM $=1-x+\frac{x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{4}-\frac{x^{5}}{5}+\cdots+\frac{x^{\mathrm{N}}}{\mathrm{N}}$.
(b) Write a FORTRAN programme to calculate
$f(x)=\frac{x-x^{2}}{2 x-6 x^{3}+19}$ for the values of x as
$10,20,30,40, \ldots \ldots . . ., 100$. Also print the result in a tabular form.

