00342

ET-204(A)

B.Tech. Civil (Construction Management) Term-End Examination June, 2013 ET-204(A) : MATERIALS SCIENCE							
				Time : 3 hours Maximum Ma			: 70
				Note :		Answer any seven questions. All questions carry equal marks. Use of scientific calculator is permitted.	
				1.	(a)	Define direction index (uvw) in a cubic crystal. How is family of directions having same indices represented ? If a plane and a line have same indices, how are they related.	7
		Show (1 1 1), (1, 1, 0) and $\left(\overline{1}\ \overline{1}\ 0 ight)$ directions					
	(b)	in cubic crystal. Define planer and linear atomic density of a crystalline structure.	3				
2.	(a)	Describe three types of bonds that occur between atoms. Explain the effects of bonds on properties of material.	7				
	(b)	Calculate packing factor of simple cubic lattice.	3				
3.	(a)	How do you classify steels ? What are the applications of medium carbon and high carbon steels ? Give examples.	5				

ET-204(A)

- (b) What is meant by Stainless steel ? What 5 are its types ? Give three examples of application of stainless steel.
- Draw iron-carbon phase diagram and show 10 various phases where they exist.
- Describe following heat treatments which can be 10 given to steel.
 - (a) Annealing
 - (b) Hardening
 - (c) Tempering

How do these treatments affect properties ? Illustrate with examples.

- 6. (a) Describe the types of defects in crystalline
 6 structure. Which defect helps plastic deformation ? What can be done to reduce its effect so that plastic deformation requires high stress and thus strength of crystalline structure is increased ?
 - (b) On stress strain diagram show yielding in 4 mild steel specimen. Why does yielding occur ?
- 7. (a) Define thermal conductivity and give its 5 units. How does thermal conductivity of pure metal depend upon temperature. Show the conductivity variation of Ag, Cu and Al between 0 and 300°C.

ET-204(A)

(b) What is a refractory material and where is it used ? Name the chemical compounds which are refractory materials.

5

- 8. (a) What is resistivity of an electrical conductor ? 5
 What factors affect the resistivity ? Show the variation of resistivity as the temperature increases.
 - (b) What is an extrinsic semi conductor ? 5 Distinguish between p - type and n - type extrinsic semi conductors.
- (a) Distinguish between solid solution 5 hardening and precipitation hardening.
 - (b) A steel rod of diameter 20mm and guage 5
 length of 40mm is pulled by a force of 8 kN
 The increase in guage length is recorded as 0.00 485mm. Calculate modulus of elasticity of steel.
- 10. (a) Why it is difficult to weld austenitic stainless 5 steel (18% Cr, 8%Ni, 0.08%C)? What defect is produced in weld region?
 - (b) Show three arrangements of 5 macromolecules in a polymer. Which arrangement is good for strength? The three arrangements are :
 - (i) Amorphous
 - (ii) Crystalline in amarphous matrix
 - (iii) Oriented crystalline.

ET-204(A)

3