B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)

 BTCLEVI/BTMEVI/BTELVI/BTECVI/BTCSVITerm-End Examination
June, 2013

ET-202(A) : ENGINEERING MECHANICS

Time : 3 hours Maximum Marks : 70

Note: Answer any ten question. All questions carry equal marks. Use of calculator is permitted.

1. Figure 1 shows coplaner forces acting at a point 7 O. Determine the magnitude and direction of the resultant.

2. Two smooth spheres, each of radius $r=25 \mathrm{~cm}$ and weight $w=240 \mathrm{~N}$, rest in a horizontal channel having vertically walls, the distance between which is 90 cm , as shown in figure 2. Find the force exerted on the walls and the floor of the channel.

Figure 2
3. Find the forces in each member of the pin jointed truss, as shown in figure 3.

Figure 3
4. Locate the centroid of the hatched area as shown in figure 4.

Figure 4
5. For what value of the pull P in the system shown 7 in figure 5 the motion will impend? Assume the pulley to be smooth and take $\mu=0.30$ between any surfaces in contact.

12. Find the position of centre of gravity of the composite body as shown in figure 9. Density of the material of hemi-sphere is twice that of cone.

Figure 9
13. Determine the value of moment of inertia of a 7 rectangle, of width B and depth D, about a horizontal axis XX passing through its centre as shown in Figure 10.

Figure 10
6. Two blocks A and B, connected by a link $A B$ of negligible weight, are supported on rough surfaces as shown in figure 6. The co-efficients of static friction for blocks A and B are 0.4 and 0.35 respectively. If block B weighs 7.5 kN , what is the least weight of the block A for which the system is in equilibrium?

Figure 6
7. A ball is thrown vertically upwards with a 7 velocity $9 \mathrm{~m} / \mathrm{sec}$ from the edge of a cliff 15 m above the sea level as shown in figure 7. What is the highest point above sea level reached by the wall? How long does the ball take to hit the water? With what velocity does it hit the water?

8. The pilot of an aeroplane flying horizontally at a height of 1000 m with a constant speed of $270 \mathrm{~km} / \mathrm{hr}$ wishes to hit a target on the ground. At what distance from the target should he release the bomb in order to hit the target? At what angle would the target appear to him from that distance?
9. Provide a general relationship between the range
and maximum height achieved by a projectile thrown at an angle ' α ' to the horizontal. For what value of α do we get the maximum range ? Discuss briefly.
10. Draw shear force and bending moment diagrams for the simply supported beam as shown in figure 8 .

Figure 8
11. A motorist travelling at a speed of 90 kmph suddenly applies brakes and halts after skidding through 20 m . Find :
(a) the time required for the motor to stop.
(b) the average frictional resistance offered by the road.

