No. of Printed Pages : 7

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)

Term-End Examination June, 2013

ET-105(B) : CHEMISTRY

Time : 3 hours

Maximum Marks: 70

- Question no. 1 is compulsory. Answer any five Note : questions from the remaining. Use of calculator is permitted.
- given alternatives for the following :
 - The nearest distance between two atoms in 2 (a) a BCC unit cell with lattice parameter 'a' is :
 - (ii) $\frac{a\sqrt{3}}{2}$ (i) a/2
 - (iv) $\frac{a\sqrt{2}}{2}$ (iii) $a\sqrt{3}$
 - (b) Graphite :
 - contains only covalent bonds (i)
 - (ii) is used as a dry lubricant
 - has a BCC structure (iii)
 - is a bad conductor of electricity (iv)

1

ET-105(B)

Write the most appropriate answer out of the 1.

ET-105(B)

P.T.O.

- (c) An ideal gas undergoing isothermal 2 transformation, the energy :
 - (i) Increases as the pressure increases
 - (ii) increases as the volume increases
 - (iii) decreases as the volume decreases
 - (iv) Remains constant
- (d) Which one of the following is a **2** nucleophile ?
 - (i) $AlCl_3$ (ii) H^+ (iii) BF_3 (iv) NH_3

(e) In the compound : $CH_2 = CH - CH_2 - CH_2 - C \equiv CN$ The $C_2 - C_3$ bond is of the type : (i) $sp - sp^2$ (ii) $sp^3 - sp^3$ (iii) $sp - sp^3$ (iv) $sp^2 - sp^3$ (f) The monomer of natural rubber : (i) Butadiene (ii) Chloroprene (iii) 2 – Methyl – 1,2 – butadiene (iv) 2 – Methyl – 1,3 – butadiene Laughing gas is : (g) (i) NO (ii) N₂O (iii) N_2O_5 (iv) NH₂ Parke's process is used for : (h) (i) Manufacture of white lead (ii) Manufacture of silver

- (iii) Manufacture of sodium
- (iv) Manufacture of NaOH

ET-105(B)

2

2

2

2

- (i) In Cannizzaro reaction reagent and other 2 conditions used are :
 - (i) Anhydrous $AlCl_3 + HCl$
 - (ii) Aq. or alc. alkali
 - (iii) Br₂ + alkali
 - (iv) Cu powder + HCl
- (j) Dulong and Petit's law is related to :
 - (i) $P^{\circ} = Mole \ fraction \times Total \ pressure$
 - (ii) $V \alpha$ n at constant T and P
 - (iii) Sp. heat \times At.wt. = 6.4
 - (iv) $V \alpha T$
- 2. (a) What is the difference between a carnot 2 heat engine cycle and a carnot refrigeration cycle ?
 - (b) What is the efficiency, η of a heat engine if 4 it is operating between the temperatures T₁ and T₂, where T₁ > T₂?
 - (c) A heat engine operating between 600 K and 4400 K. What is the percentage efficiency of this heat engine ?
- (a) An organic compound C₈H₁₈ on 3 monochlorination gives a single monochloride. Write the structure of hydrocarbon.
 - (b) Explain in not more than 2, 3 lines : 3
 "Aniline does not undergo Friedal Craft reaction".

ET-105(B)

P.T.O.

- (c) Which of the following has larger dipole 2 moment ? Explain.
 1 - Butyne or 1 - Butene.
- (d) SF₆ has octahedral structure. What is the 2 hybridization state of sulphur ?
- 4. Name the following reactions :

(a)
$$3 (CH_3)_2 C = O \xrightarrow{Conc. H_2SO_4} H_3C (CH_3)_{CH_3} CH_3$$

(b)
$$CH_3COCl + H_2 \xrightarrow{Pd-BaSO_4} Qunoline 2$$

(c)
$$C_6H_5N_2Cl \xrightarrow{Cu \text{ powder}} C_6H_5Cl \qquad 2$$

(d)
$$2HCHO \xrightarrow{50\% \text{ NaOH}} CH_3OH + 2$$

HCOO⁻ Na⁺

(e)
$$(H) \xrightarrow{CHCl_3, aq NaOH} (H) \xrightarrow{OH} (HO) 2$$

5. (a) Define solubility and solubility product. 2 (b) Calculate the solubility of CaF_2 in pure water 4 at 25°C. The solubility product of CaF_2 at 25°C; $K_{sp} = 1.7 \times 10^{-10}$

(c) Calculate the solubility of AgCl in presence **4** of 0.1 M AgNO₃. The solubility product of AgCl = 2.8×10^{-10} .

ET-105(B)

- 6. (a) What is the relation between K_p and K_c for 4 the gaseous reaction aA + bB = *l*L + mM The partial pressures of the gaseous species at equilibrium are P_A, P_B, P_L and P_M.
 (b) At a total pressure of 2 atm, and 673 K the equillibrium constant K_p for the reaction. N₂ (g) + 3H₂ ^(g) = 2NH₃ (g) is 1.64×10⁻⁴. Calculate K_c. Given : R=0.082/ dm³ atm K⁻¹mol⁻¹.
 - 7. (a) What is osmotic pressure ? How is it 5 determined experimentally ?
 - (b) A 5.13% solution of cane sugar is isotonic 5
 with a 0.9% solution of an unknown solute.
 Calculate the molar mass of the solute.
 Mol. wt. of sugar = 342 g mol⁻¹
 - 8. (a) Define entropy. How is it related to 4 standard Gibbs energy and standard enthalpy in Gibbs Helmholtz equation ?
 - (b) Calculate the value of logK_p for the reaction 6 N₂ (g) + 3H₂ (g) = 2NH₃ (g) at 25°C. The standard enthalpy of formation of NH₃(g) is -46 kJ and standard entropies of N₂ (g), H₂ (g) and NH₃ (g) are 191, 130 and 192 JK⁻¹ mol⁻¹ respectively. R=8.3 JK⁻¹ mol⁻¹.

ET-105(B)

9. Explain the following :

(a)	What is meant by coke and coal tar ?	2
(b)	What is water gas ? How does it form ?	2
(c)	How is soap prepared from natural fat or oil ?	2
(d)	What is LPG ? How is it obtained ?	2
(e)	What are the differences between catalytic craking and hydrocraking ?	2

- 10. (a) What do you understand by IUPAC 2 nomenclature ?
 - (b) Which numbering is correct according to 2
 IUPAC nomenclature for the same compound given below (i) or (ii) ?

(i)
$$H_{3}C_{8} - C_{7} - C_{6} - C_{7} - C_{1} - C_{$$

(ii)
$$\begin{array}{cccccc} CH_{3}CH_{3}H & H & H CH_{3} \\ & & & & & & \\ & & & & & & \\ H_{3}C-C-C-C-C-C-C-C-C-CH_{3} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

ET-105(B)

- (c)
- Give IUPAC name for the following :

(ii)
$$\begin{array}{c} CH_3 - CH_2 - C \\ CH_3 - CH_2 - C \\ CH_3 - CH_2 - C \\ 0 \\ O \end{array}$$

2