B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) /
 B.Tech. (Aerospace Engineering)

Term-End Examination
01614
June, 2013

ET-102 : MATHEMATICS - III

Time : 3 hours
Maximum Marks : 70
Note: Question No. 1 is compulsory. Attempt any other eight questions from q. no. 2 to q. no. 15. Use of calculator is allowed.

1. Complete the following :
$7 \times 2=14$
(a) The sequence $\left\langle x_{\mathrm{n}}\right\rangle$, where $x_{\mathrm{n}}=n t \mathrm{e}^{-n t^{2}}$, is not uniformly convergent on $(0,1)$ and attains maximum value \qquad at $\mathrm{t}=$
(b) If L^{-1} denotes Laplace Inverse, then

$$
L^{-1}\left[\frac{1}{(\mathrm{~s}-1)(\mathrm{s}-2)}\right]=
$$

(c) If the series \sum an is convergent, then the series $\sum \mathrm{an} \cdot \frac{x^{\mathrm{n}}}{1+x^{2 \mathrm{n}}}$ converges uniformly in
(d) The analytic function $f(z)=\mathrm{w}=\mathrm{u}+\mathrm{iv}$ for which $u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right) \quad$ is
\qquad .
(e) If C is the circle $|z|=3$, then

$$
\int_{c} \frac{z+2}{(z+1)^{2}(z-2)} d z=
$$

\qquad .
(f) If $\mathrm{p}_{\mathrm{n}}(x)$ is a Legendary polynomial, then $\mathrm{P}_{\mathrm{n}}^{\prime}(-x)$ in terms of $\mathrm{P}_{\mathrm{n}}(x)$ and its derivatives is \qquad .
(g) The partial differential equation :
$\left(D-D^{\prime}\right)^{2} u=e^{x+2 y}$ has the particular integral as \qquad .
2. (a) Apply Picord's method to find first two approximations to the solution of IVP

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=2 y-2 x^{2}-3 \text { with } y(0)=0 \tag{1/2}
\end{equation*}
$$

(b) Solve $\left(2 x-10 y^{2}\right)$ dy $+\mathrm{yd} x=0$
3. Find the power series solution about $x=1$ of the 7 initial value problem

$$
x \frac{d^{2} y}{d x}+\frac{d y}{d x}+y=0 \text { with } y(1)=1, \frac{d y}{d x} \left\lvert\, \begin{aligned}
& =2 \\
& (y=1)
\end{aligned}\right.
$$

4. Find the equation of integral surface of the p.d.e.

$$
\left(x y^{3}-2 x^{4}\right) p+\left(2 y^{4}-x^{3} y\right) q=9 z\left(x^{3}-y^{3}\right)
$$

5. Using Laplace Transforms, solve

$$
\left(D^{3}-1\right) y=e^{t}, \text { with } y(0)=0, y^{\prime}(0), y^{\prime \prime}(0)=0
$$

6. (a) Show that $3^{1 / 2}$
$\mathbf{L}(\log t)=\frac{\mathrm{I}^{\prime}(1)-\log s}{s}$
(b) Using First Shifting Theorem, find

$$
L^{-1}\left(\frac{1}{s^{2}-4 s+20}\right)
$$

7. Test the sequence $\left\langle a_{n}\right\rangle$, defined by the relation

$$
a_{n}=1+\frac{1}{\underline{1}}+\frac{1}{\underline{2}}+\frac{1}{\underline{3}}+\cdots-\frac{1}{\underline{\underline{n}-1}},
$$

for bounded, monotonocity and convergence.
8. Test the convergence of the series
(a) $1+x+\frac{x^{2}}{\underline{2}}+\frac{x^{3}}{\underline{3}}+\cdots \cdot$
(b) $1-\frac{1}{3 \cdot 2}+\frac{1}{3^{2} \cdot 3}+\frac{1}{3^{3} \cdot 4}+\cdots-\cdot$.
9. Find half-range cosine series for the function
$f(x)=\left[\begin{array}{ccc}x & \text { for } & 0<x<\frac{\pi}{2} \\ \pi-x & \text { for } & \frac{\pi}{2}<x<\pi\end{array}\right.$
10. Find the Fourier series generated by periodic function $|x|$ of period 2π. Also compute the value of series at -3π.
11. (a) Find the characteristic function, transfer 3 function and frequency response function for the equation $\left(\mathrm{D}+4 \mathrm{D}^{-1}\right) x=\mathrm{f}(\mathrm{t})$
(b) Tiest the following differential equation for 4 stability : $\left(\mathrm{D}^{3}+1\right) x=\mathrm{f}(\mathrm{t})$
12. Apply tabular form of Harwitz-Routh criterion to test the stability of the differential equation $\left(D^{4}+7 D^{3}+17 D^{2}+17 D+6\right) y=f(x)$.
13. Using the method of separation of variables, find 7 the solution of the heat conduction problem

$$
\begin{aligned}
& \mathrm{u}_{x x}=4 \mathrm{u}_{\mathrm{tt}}, 0<x<2, \mathrm{t}>0 \\
& \mathrm{u}(0, \mathrm{t})=0=\mathrm{u}(2, \mathrm{t}), \mathrm{t} \geqslant 0, \\
& \mathrm{u}(x, 0)=2 \sin \frac{\pi x}{2}-\sin \pi x+4 \sin 2 \pi x .
\end{aligned}
$$

14. (a) Find the value of $c:|z|=1 e^{2 z}(z+1)^{-2} d z \quad 3^{1 / 2}$
(b) Find the Laurent's expansion of the function $3^{1 / 2}$

$$
f(z)=\frac{7 z-2}{(z+1) z(z-2)} \text { in the annulas } 0<|z+1|<1 \text {. }
$$

15. Using the method of complex integration, evaluate

$$
\int_{0}^{\pi} \frac{a d \theta}{a^{2}+\sin ^{2} \theta}, a>0 .
$$

