B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)

 B.Tech. (Aerospace Engineering)

 B.Tech. (Aerospace Engineering)
 BTCLEVI/BTMEVI/BTELVI/BTECVI/BTCSVI

Term-End Examination
June, 2013
00406

ET-101(B) : MATHEMATICS-II

Time : 3 hours
Maximum Marks : 70
Note: All questions are compulsory. Use of calculator is permitted. Use statistical table wherever necessary.

1. Answer any six of the following: $6 \times 5=30$
(a) The probability that machine A will be performing a useful function in 5 years time is $1 / 4$, while the probability that machine B will be performing useful function at the end of the same period is $1 / 3$. Determine the probability that
(i) Both machine will be performing a useful function.
(ii) Neither will be performing a useful function.
(iii) Only machine B will be performing a useful function.
(iv) At least one of the machine will be performing a useful function.
(b) There are 6 positive and 8 negative numbers. Four numbers are chosen at random, without replacement and multiplied. What is the probability that the product is a positive number?
(c) A town has two doctors X and Y operating independently. If the probability that the doctor X is available is 0.9 and that for Y is 0.8 , then find out the probability that at least one doctor is available when needed.
(d) The probabilities of A, B and C , solving a problem are $1 / 3,2 / 7$ and $3 / 8$ respectively. If all of the three try to solve the problem simultaneously, find the probability that exactly one of them will solve it.
(e) Let X be the continuously random variable with probability density function
$f(x)=\left\{\begin{array}{l}k x^{2},-1<x<2 \\ 0, \text { otherwise }\end{array}\right.$
(i) Find the constant ' k '
(ii) Find $\mathrm{P}(0<x \leq 1)$
(f) The overall percentage of failures in a certain examination is 40 . What is the probability that out of a group of 6 candidates at least 4 would pass the examination?
(g) Suppose the probability for A to win a game against B is 0.4 . If there is an option of A playing either a "best of 3 games" or a "best of 5 games" match against B, which option should A choose so that the probability of his winning the match is higher? Assume that no game ends in a draw.
(h) A factory manufacturing television has four units A, B, C and D. The units A, B, C and D manufacture $15 \%, 20 \%, 30 \%$ and 35% of the total output, respectively. It was found that out of their output $1 \%, 2 \%, 2 \%$ and 3% are defective respectively in the same order. A television is chosen at random from the total output, and found to be defective. What is the probability that it came from the unit D ?
2. Answer any two of the following :
(a) In a certain factory producing cycle tyres, there is a small chance of 1 in 500 tyres to be defective. The tyres are supplied in lots of 10 . Using poisson distribution, calculate the approximate number of lots containing
(i) no defective
(ii) one defective, and
(iii) two defective tyres respectively in a consignment of 10,000 lots.
(b) If 20% of the bolts produced by a machine are defective, determine the probability that out of 4 bolts chosen at random
(i) 1
(ii) 0
(iii) at most 2 bolts will be defective.
(c) The diameter of an electric cable is assumed to be continuous random variable with Probability Density Function (p.d.f) $\mathrm{f}(x)=6 x(1-x), 0 \leq x \leq 1$,
(i) Verify that the above is a probability density function
(ii) find its mean and variance
3. Answer any two of the following:
$2 \times 10=20$
(a) The nine items of a sample have the following values :
$45,47,50,52,48,47,49,53,51$
Does the mean of these differ significantly from the assumed mean of 47.5? Test at 5\% level of significance.
(b) A random sample of 400 tins of vegetable oil and labelled " 5 kg net weight" has a mean net weight of 4.98 kg with standard deviation of 0.22 kg . Do we reject the hypothesis of net weight of 5 kg per tin on the basis of this sample at 1% level of significance?
(c) The height distribution of a group of 10,000 men is normal with mean 64.5 inch and standard deviation 4.5 inch.
Find the number of men whose height is:
(i) less than 69 inch but greater than 55.5 inch
(ii) less than 55.5 inch, and
(iii) more than 73.5 inch.
