No. of Printed Pages : 3

BICE-022

B. Tech. (Civil Engineering) BTCLEVI

Term-End Examination

June, 2013

BICE-022 : BACHELOR OF TECHNOLOGY (CE)

Time : 3 Hours

7

0027

Maximum Marks : 70

Note	:(((<i>All answers are to be written in English or</i> <i>Attempt any seven questions.</i> <i>Non programmable calculators are allowed</i> 	All answers are to be written in English only. Attempt any seven questions . Non programmable calculators are allowed.				
1.	(a)	Explain the types of errors in numerical	5				
	(b)	Find a root of the equation $x^3 - 4x - 9 = 0$, using the bisection method correct to the three decimal places.	5				

- 2. (a) Develop a computer algorithm for finding 5 roots of f(x) = 0 using method of false position.
 - (b) Using Jacobi's method, find all the eigen 5 values of the matrix.

$$\begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}$$

BICE-022

P.T.O.

- 3. Apply Gauss elimination method to solve the 10 equations x + 4y z = -5; x + y 6z = -12, 3x y z = 4
- 4. (a) Explain Newton's forward interpolation 5 formula for any function y = f(x).
 - (b) Given the values :

<i>x</i> :	5	7	11	13	17
f(x):	150	392	1452	2366	5202

5

10

Evaluate f(g) using Lagrange's formula.

5. From the table below, for what value of *x*, *y*, is 10 minimum ? Also find the value of *y* :

<i>x</i> :	3	4	5	6	7	8
y:	0.205	0.240	0.259	0.262	0.250	0.224

6. Explain :

- (a) Trapezoidal rule
- (b) Simpson's rule
- 7. Using Runge-Kutta method of fourth order solve 10

$$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2} \text{ with } y(0) = 1 \text{ at } x = 0.2, 0.4.$$

BICE-022

 A firm making castings uses electric furnace to 10 melt iron with the following specifications :

	Minimum	Maximum
Carbon	3.20%	3.40%
Silicon	2.25%	2.35%

Specifications and costs of various raw materials used for this purpose are given below :

Material	Carbon%	Silicon%	Cost(Rs)
Steel scrap	0.4	0.15	850/ton
Cast iron scrap	3.80	2.40	900/ton
Remelt from foundary	3.50	2.30	500/ton

If the total charge of iron metal required is 4 tonnes, find the weight in kg of each raw material that must be used in the optimal mix at minimum cost.

- 9. Explain one dimensional minimization methods. 10
- Explain unconstrained optimization problem of 10 non linear programming.