(BTCSVI / BTECVI / BTELVI) B.Tech. (Degree)

Term-End Examination

June, 2013
BICE-007 : MATHEMATICS-III
Time : 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. All the question are to be answered in english only.

1. (a) Given that $f(x)=x+x^{2}$ for $-\pi<x<\pi$, find 5 the fourier expression of $f(x)$.
(b) Obtain the half-range sine series for the 5 function $f(x)=x^{2}$ in the interval $0<x<3$.
2. Find the fourier sine transform of $l^{-|x|}$ hence show 10
that $\int_{0}^{\infty} \frac{x \sin m x}{1+x^{2}} \mathrm{~d} x=\frac{\pi l^{-\mathrm{m}}}{2}, \mathrm{~m}>0$
3. (a) Solve $\left(x^{2}-y z\right) \mathrm{p}+\left(y^{2}-z x\right) \mathrm{q}=z^{2}-x y$. 5
(b) Using method of separation of variables 5 solve.

$$
\frac{\partial \mathrm{u}}{\partial x}=2 \frac{\partial \mathrm{u}}{\partial \mathrm{t}}+\mathrm{u}, \text { where } \mathrm{u}(x, 0)=6 \mathrm{e}^{-3 x} .
$$

4. A tightly stretched string with fixed end points $\mathbf{1 0}$ $x=0$ and $x=l$ is initially in a position given by $y=y_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$. If it is released from rest from this position, find displacement $y(x, \mathrm{t})$.
5. (a) Find the inverse z transform

$$
\text { of } \frac{2 z^{2}+3 z}{(z+2)(z-4)}
$$

(b) Find the z transform of $n \sin n \theta$.

5
6. Using z transform solve.
$\mathrm{u}_{\mathrm{n}+2}+4 \mathrm{u}_{\mathrm{n}+1}+3 \mathrm{u}_{\mathrm{n}}=(3)^{\mathrm{n}}$
with $u_{0}=0, u_{1}=1$.
7. Find the externals of the functional $\int_{x_{0}}^{x_{1}}\left[\frac{y^{\prime 2}}{x^{2}}\right] \mathrm{d} x$.
8. (a) Using Newton Raphson method find the 5 real roots of the equation $3 x=\cos x+1$ between 0 and 1 correct up to two decimal places.
(b) Find the cubic polynomial. Which takes the 5 following values.

x	0	1	2	3
$f(x)$	1	2	1	10

9. Solve by Gauss-seidal iteration method 10 $20 x+y-2 z=17$
$3 x+20 y-z=-18$ upto 3 iteration.
$2 x-3 y+20 z=25$
10. Evaluate. $\int_{0}^{6} \frac{\mathrm{~d} x}{1+x^{2}}$ by using.
(a) Trapezoidal rule.
(b) Simpson's $\frac{1}{3}$ rule
5
