ENGINEERING (BTCSVI)

Term-End Examination

June, 2013

BICS-008 : DISCRETE MATHS STRUCTURE

Time: 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. All questions are to be answered in English language only.

1. Let A, B, C be any three sets. Then show that :
(a) $A-(B \cap C)=(A-B) \cup(A-C)$
(b) $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
2. Let $A=\{1,2\}$ and $B=\{a, b\}$. Find all functions10
$f: A \rightarrow B$ and verify each of the functions for oneone and onto properties.
3. Show that a non-empty subset H of a group $\mathbf{1 0}$ $\left(G,{ }^{*}\right)$ is a subgroup of $\left(G,{ }^{*}\right)$ if and only if $a, b \in H \Rightarrow a+b^{-1} \in H$,
Where b^{-1} is the inverse of b in G.
4. Show that every group of prime order is cyclic $\mathbf{1 0}$ but converse is not true.
5. Draw the Hasse diagram for the partial ordering 10 $\{(A, B): A \leq B\}$ on the power set $P(s)$ where $S=\{a, b, c\}$.
6. Simplify the following using Boolean algebra. 10
(a) $\left(A B^{\prime} C^{\prime}+A B^{\prime} C+A B C+A B^{\prime} C\right)(A+B)$
(b) $\mathrm{P}+\mathrm{P}^{\prime} \mathrm{QR}^{\prime}+(\mathrm{Q}+\mathrm{R})^{\prime}$
7. Show that: 10
$(p \vee q) \wedge(\sim p \wedge \sim q)$ is a contradiction
8. By the principle of mathematical induction, prove 10 that:
$3^{2 \mathrm{n}+1}+(-1)^{\mathrm{n}} 2 \equiv 0(\bmod 5)$
9. Show that every self-complementary graph has 10 4 k or $4 \mathrm{k}+1$ vertices.
10. Write short notes on any two of the following: 5+5
(a) Product of Graphs
(b) Composition of Graphs
(c) Graph colouring.
