B.Tech. (AEROSPACE)

Term-End Examination

June, 2013

BASE-005 : INTRODUCTION TO COMPUTATIONAL FLUID DYNAMICS

Time : 3 hours
Maximum Marks : 70
Note: Answer any seven questions. Use of calculator is permitted.

1. Solve the following equations by Gauss - 10 Elimination method :

$$
\begin{aligned}
& 2 x+2 y+4 z=18 \\
& x+3 y+2 z=13 \\
& 3 x+y+3 z=14
\end{aligned}
$$

2. (a) What is the source of error in the CFD Analysis? How it can be removed or minimized?
(b) Discuss the Application of CFD in Aero 4 Space Engineering.
3. Derive the Navier-Stokes equations in 10
conservation form.
P.T.O.
4. Explain the method of solving an incompressible flow problem using stream function - vorticity formulation.
5. Explain the need for turbulence modeling in $\mathbf{1 0}$ dealing with CFD problems. What are the various turbulence models used in CFD problems?
6. Derive the first order accurate forward difference and backward finite difference approximation for the second derivative of ' f ' with respect to ' x ' using Taylor Series expansion.
7. (a) Compare the generation of grids in physical and computational planes.
(b) Is it necessary to have the computational plane grid to be of rectangular element's ? If yes why?
8. (a) Show that Laplace's equation given below is elliptical in nature.

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+C^{2} \frac{\partial^{2} \phi}{\partial y^{2}}=0
$$

(b) Draw a neat sketch and show vortex lattice 4
along a wing.
9. Consider the 2D TSP equation
$\left[\left(1-M_{\alpha}^{2}\right)-(\gamma+1) M_{\alpha}^{2} \psi_{x}\right] \psi_{x x}+\psi_{y y}=0$.
Develop the boundary conditions satisfying the condition of No Normal flow on the surface of the thin airfoil like object along with the expression for $C P$.

