BAS-023

01640	ech. (AEROSPACE ENGINEERING) (BTAE) Term-End Examination June, 2013
BAS-023 :	(BTAE) Term-End Examination June, 2013 BAS-023 : AIRCRAFT DESIGN/LAUNCH VEHICLE/ ROCKET DESIGN Sime : 3 hours Maximum Marks : 70 Note : (1) Question No. 1 is compulsory. (2) Attempt any 6 from no. 2-9.
Time : 3 ho	June, 2013 5-023 : AIRCRAFT DESIGN/LAUNCH VEHICLE/ ROCKET DESIGN e : 3 hours Maximum Marks : 70 e : 3 hours Maximum Marks : 70 e : (1) Question No. 1 is compulsory. (2) Attempt any 6 from no. 2-9. Attempt any five of the following : 5x2=10 (a) Explain the formation of wing-tip vortices. Which type of drag they are associated with ? (b) How Laminar flow airfoil geometry is different from a Conventional airfoil ?
 Note: (1) Question No. 1 is compulsory. (2) Attempt any 6 from no. 2-9. 1. Attempt any five of the following : 5x2=10 (a) Explain the formation of wing-tip vortices. 	
(a) (b) (c) (d)	Explain the formation of wing-tip vortices. Which type of drag they are associated with ? How Laminar flow airfoil geometry is different from a Conventional airfoil ? Bring out any two important differences between shock waves and expansion waves in a Supersonic flow. Describe the effect of leading edge radius of an airfoil.

BAS-023

P.T.O.

- (a) Frame specifications for an airplane for 5 medium range with 350 Passengers with a cruise speed of 950 km/h. Make use of sketches and plot to illustrate your answer.
 - (b) Compare air load distribution over a rectangular wing with an elliptic wing.Which one of these is superior and how?Which of these has higher numerical value of Oswald wing efficiency factor?

5

- (a) What are Possible locations of Jet engines 7 on an airplane (both civil and military) ? Illustrate each of these with sketches/ diagrams of existing/past airplanes.
 - (b) What are the types of compressors used in 3
 Gas turbine Engines ? Compare them with respect to their advantages/disadvantages.
- 4. A small turbo-Prop aircraft is designed for a Range of 1000 km. The crew weight is 400 kg and payload weight is 1000 kg. The aircraft cruises at mach 0.6 at an altitude of 7 km, where the speed of sound can be taken to be 312 m/s. The maximum value of (L/D) is 16. Calculate the total take-off weight of the aircraft if the specific fuel consumption of 0.015 grams per newton per second. Assume empty weight fraction relation We/Wo=0.62.

- 5. What is the effect of following features of a wing ? 5x2=10
 - (a) Leading Edge Sweep
 - (b) Taper Ratio
 - (c) Aspect Ratio
 - (d) Wing Tips
 - (e) Dihedral
- 6. (a) What is the effect of stall speed and wing 5 loading on Take-off and Landing performance ?
 - (b) Compare a high wing commercial airplane 5 configuration with a low wing configuration. What are the aerodynamic and structural features of these two types of airplanes ?
- Describe the methodology involved in 10 determination of Drag of an Airplane wing. Support it with sketches.
- Elaborate design and structural features of TEJAS, 10 The HAL built LCA. Comment on the use of materials used for manufacturing this military airplane.

- 9. (a) How various high lift devices affect
 6 maximum lift co-efficient ? Compare their effect quantitatively.
 - (b) Explain in brief the 'V-n diagram' with the **4** help of sketches.