B.TECH. (AEROSPACE ENGINEERING) (BTAE) Term-End Examination June, 2013

BAS-015 : AERODYNAMICS - II

Time : 3 Hours

00860

Maximum Marks: 70

Note : *Question No. one is compulsory. Attempt any six question from the remaining questions* **Q. 2** *to* **Q. 9***. Use of Gas Table is permitted.*

1. Fill in the blank :

- (a) Down wash is _____ over the span of a finite wing for an elliptical lift distribution.
- (b) In choking condition massflow rate at the throat of the C-D nozzle is _____.
- (c) When turning angle of the flow is more than the maximum turning angle ($\theta > \theta_{max}$) then shock becomes ______ to the surface.
- (d) _____ point at which the velocity gradient becomes zero.
- (e) Downstream Mach No behind the oblique shock wave is _____ than the upstream Mach No.

1

BAS-015

P.T.O.

2x5 = 10

BAS-015

- (a) Derive an expression for induced drag coefficient and induced angle of attack of a finite wing for elliptical lift distribution. 7+3=10
 - (b) Differentiate between finite and infinite wing with suitable sketch and plot.
- (a) Explain Prandtl Lifting line theory with suitable sketch.
 6+4=10
 - (b) The measured lift slope for the NACA 23012 is 0.1080 degree⁻¹ and $\alpha_{L=0} = -1.3^{\circ}$. Consider a finite wing using this air foil with AR = 8 and taper ratio = 0.8. Assume that $\delta = \tau = 0.055$ calculate the lift and induced drag. Coefficient for this wing at a geometrical angle of attack = 7°.
- **4.** Show with suitable derivation that flow behind **10** the normal shock is always subsonic.
- 5. Consider a normal shock wave and demonstrate **10** that Mach No M_2 given in terms of free stream Mach No M_1 is :

$$M_2^2 = \frac{2 + (r - 1)M_1^2}{2 r M_1^2 - (r - 1)}$$

6. (a) Derive an expression for area ratio between inlet and throat and Mach No of C-D Nozzle
 5+5=10

$$\frac{A}{A^*} = \frac{1}{M_1} \left[\frac{2}{r+1} + \frac{r-1}{r+1} M_1^2 \right]^{\frac{r+1}{2(r-1)}}$$

BAS-015

- (b) A uniform supersonic flow at $M_1 = 2.0$, $P_1 = 0.85 \times 10^5 \text{ N/m}^2$ and temperature $= 270^{\circ}\text{K}$ expands through two convex corner of 10° each. Determine the Downstream Mach No M_3 , P_2 , T_2 and angle of the second fan.
- (a) Explain in brief the theory of detached shock wave in front of a blunt body. 5+5=10
 - (b) A uniform supersonic airflow at Mach No=2.0 passes over a wedge. An oblique shock making an angle 40° with the flow direction is attached to the wedge. If the static pressure and temperature in the free stream are 0.5×10^5 N/m² and 0°C respectively, determine the static pressure and temperature behind the wave, Mach No of the flow passing over the wedge and wedge angle.
- 8. (a) A two-dimensional wedge moves through the atmosphere at sea level at zero angle of attack with $M_{\infty} = 3.0$. Calculate C_L and C_D using shock expansion theory. **7+3=10**

(b) Why Dimples are manufactured on the surface of Golf ball ? Explain in brief.

9. (a) A roughened thin board 25 cm wide, 200 cm long moves at 3 m/s through water. The boundary layer is 5 cm thick both sides at rear end of the board, and the velocity distribution is prescribed by the relation 5+5=10

$$\frac{\mathbf{u}}{\mathbf{v}_0} = \left(\frac{y}{\delta}\right)^{1/4}$$

Find drag force in Newtons and express it as a pure number independent of thickness δ .

(b) Explain phenomena of flow separation over the flat surface. Justify why separation of turbulent boundary layer does not occur easily compare to laminar boundary layer ?