00740

BAS-014

B. TECH. (AEROSPACE ENGINEERING) (BTAE) Term-End Examination June, 2013

BAS-014 : AIRCRAFT STRUCTURES

Time : 3 hours Maximum N			: 70
Not	e: (i (i (i) Answer any five questions. i) All questions carry equal marks. ii) Use of non-programmable calculators is permi	tted.
1.	(a)	Explain the Flight Envelope with the help of V-N Diagram considering specific reference to positive and negative load factors.	10
	(b)	Explain in short three types of Fuselage Structure.	4
2.	(a) (b)	Explain basic features of wing construction. Explain the governing equation of deflection of a beam.	10 4
3.	(a)	Explain and define the following in detail	9

- by specifying the units wherever applicable.
 - (i) Short and long column.
 - (ii) Torsionally equivalent shaft
 - (iii) End Fixidity of column

BAS-014

(b) List out the assumptions made in Euler's 5 column theory.

4

- (a) Write down the Rankine's Formula for columns explaining the notations used. Can the Rankine's Formula be used for Long as well as short columns ? Give reasons for your answer.
 - (b) A hollow cast Iron column with fixed ends, 10 supports an axial load of 1000 kN. If the column is 5 m long and has an external diameter of 250 mm, find the thickness of the metal required.

Assume Rankine's constant $a = \frac{1}{1600}$ and $F_y = 80$ mPa.

- 5. (a) What assumptions are made for developing 4 theory of Torsion ?
 - (b) Calculate the maximum Torque that can be 10 safely transmitted by a shaft of 400 mm diameter, if
 - (i) The allowable shear stress is
 40 N/mm² and
 - (ii) The maximum allowable angle of twist is 2° in a length of 10 m. Take G=80 kN/mm².

BAS-014

2

Find the slope and deflection at the free end of 14 the cantilever as shown in the figure.

Take $EI = 200 \times 10^6 N - m^2$

- 7. Answer the following :
 - (a) Define shear centre and center of twist.
 - (b) The position of neutral axis depends only upon the cross-sectional geometry. Is the statement True or False ? Explain.
 - (c) What do you understand by Torsionally equivalent shaft ?
 - (d) For thin cylinders the ratio

diameter thickness > Fill in the blank

- (e) The boundary conditions for a shaft at 2 simple supports are y = 0; $\frac{dy}{dx} \neq 0$. Is the statement True or False ? Explain.
- (f) At the middle of a simply supported beam 2with a single load at the center

 $y \neq 0$, $\frac{dy}{dx} = 0$. Is the statement True or False ?

BAS-014

3

2

2

2

2

(g) For thin spherical shell $\frac{\text{diameter of shell}}{\text{thickness of shell}} > \dots$. Fill in the blank 2

8. A beam of I section shown in the figure is simply 14 supported over a span of 10 m. It carries an uniform load of 4 kN/m over the entire span. Evaluate the maximum bending stress.

