B.Tech. (AEROSPACE ENGINEERING)
 (BTAE)

Term-End Examination

June, 2013

BAS-012 : AERODYNAMICS - I

Time : $\mathbf{3}$ hours
Maximum Marks : 70

> Note: Q. 1 is compulsory. Attempt any six questions from the remaining.

1. Write short notes on:
(a) Magnus effect 2
(b) Kutta Condition 3
(c) d' Alembert's paradox 3
(d) Jet flap 2
2. Derive the complex potential for the following :
(a) Uniform flow in any direction 3
(b) Doublet at origin with axis along $\mathrm{O}_{x} \quad 3$
(c) Straight line vortex (axis normal to the plane 4 of the flow at the origin)
3. Using Kutta-Zhukovsky theorem of circulation 10 and lift, derive expressions for lift as $L^{\prime}=\rho U \Gamma$ where symbols have their usual meaning.
4. (a) Derive $\mathrm{Cp}=1-4 \sin ^{2} \theta$ for non-lifting flow over a circular cylinder.
(b) Find the maximum velocity for the 4 non-lifting flow over a circular cylinder.
5. (a) Prove that streamlines can be represented 5 by the equation $\frac{d y}{d x}=\frac{\mathrm{v}}{\mathrm{u}}$
(b) If a flow $u=3 \mathrm{~m} / \mathrm{s}$ and $\mathrm{v}=6 \mathrm{~m} / \mathrm{s}$, determine the equation of streamlines passing through the origin.
6. Prove that :
(a) Constant stream function and velocity 5 potential lines in a flow net are orthogonal.
(b) Explain schlieren system of flow 5 visualization in wind tunnels.
7. Describe flow visualization techniques used in subsonic wind tunnels.
$\begin{array}{lll}\text { 8. List and describe types of supersonic wind } & \mathbf{1 0} \\ \text { tunnels, their components and functions. }\end{array}$
8. Prove that as per thin aerofoil theory, solution for 10
flat plate is $K=2 u \frac{1-\cos \theta}{\sin \theta}$, where K is the distribution of velocity over the angle of attack and u is the free stream velocity.
