BAS-009

B. TECH (AEROSPACE ENGINEERING) (BTAE) Term-End Examination June, 2013

BAS-009 : INTRODUCTION TO AERONAUTICS

Time : 3 hours	Maximum	Marks :	70
			_

Note : Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is permitted.

- (a) What is the "Area rule" in an airplane ? 5 What effect does it have on the aerodynamics of the airplane?
 - (b) What is a super critical airfoil ? Make a neat 5 sketch and explain.
- 2. Define the following terms : 10
 - (a) Flaps
 - (b) Drag Divergence Mach no.
 - (c) Sweep Back
 - (d) Ailerons
 - (e) Wing Warping.

BAS-009

- What are the various layers of atmosphere ? 10
 Distinguish between Troposphere and Stratosphere.
- What is NACA? Give nomenclature details of 10 NACA 4 digit, 5 digit and 6 digit airfoils with suitable examples.
- 5. (a) What are sweptback wings and what 5 purpose do they serve ? Explain with the help of a neat sketch.
 - (b) Explain delta wings with a neat sketch. 5
 Enumerate its advantages over a conventional wing.
- 6. (a) Explain " skin friction drag" and "pressure" 5 drag.
 - (b) What is the cause of induced drag ? 5 Discuss.
- 7. (a) Derive expression for R(radius of turn) and 5 ω (rate of turn) for pull up and pull down maneuvers.
 - (b) Derive the expression for (L/D)_{max} in a 5 steady level flight. What inference can you draw from the desired expression?
- 8 (a) Explain positive, negative limit load factor, 5
 stall area and corner velocity in a V-n
 diagran. Make a neat sketch.

BAS-009

2

- (b) For an aircraft W/S=400 Kg/m², 5
 CL_{max}=1.2, positive limit load factor=4.5.
 Calculate the airplane's corner velocity at sea level.
- (a) Define lift, drag and moment co-efficients 5for a given body. Also give their significance.
 - (b) Boeing 777 has a wing planform area of 5
 415 m², take-off weight 23000 kg and take off velocity 256 km/h
 - (i) Calculate lift co-efficient at take-off for standard sea level conditions.

9

3