B.Sc. (NAUTICAL SCIENCE)

Term-End Examination

June, 2013

BNA-011 : APPLIED MATHEMATICS

Time : $\mathbf{2}$ hours
Note: (i) Attempt any five questions.
(ii) Use of scientific calculator is allowed.

1. (a) Find $\int_{1}^{11} f(x) \mathrm{d} x$, where $f(x)$ is given by the 7 following table, using Simpson's one - third rule.

$x:$	1	2	3	4	5	6	7	8	9	10	11
$f(x):$	543	512	501	489	453	400	352	310	250	172	95

(b) Find the angle between two vectors 7
$\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ having the same length $\sqrt{2}$ and their scalar product is -1 .
2. (a) A die is thrown 6 times. If "getting an odd 7 number" is a "success", what is the probability of getting:
(i) 5 successes
(ii) at least 5 successes
(b) For 10 observations on price (x) and supply (y), the following data were obtained (inappropriate units) :
$\Sigma x=130, \Sigma y=220, \Sigma x^{2}=2288, \Sigma y^{2}=5506$ and $\Sigma x y=3467$. Obtain the y on x line of regression.
3. (a) If $y=3 \cos (\log x)+4 \sin (\log x)$ 7 Show that $x^{2} y_{2}+x y_{1}+y=0$.
(b) If $x=\mathrm{a}(\cos \mathrm{t}+\mathrm{t} \sin \mathrm{t})$ and $y=(\sin \mathrm{t}-\mathrm{t} \cos \mathrm{t})$
find $\frac{d^{2} y}{d x^{2}}$.
4. (a) Evaluate $\int \sqrt{7 x-10-x^{2}} d x$. 7
(b) Using Integration, find the area of the region 7 bounded between the line $x=4$ and the parabola $y^{2}=16 x$.
5. (a) In a spherical triangle $\mathrm{ABC}, 7$ angle $A=124^{\circ} 21^{\prime}$, side $A B=41^{\circ} 30^{\prime}$ and side $\mathrm{AC}=51^{\circ} 30^{\prime}$; Calculate side BC using Haversine formula.
(b) In a quadrantal spherical triangle $A B C$ 7 side $b=90^{\circ}$, angle A and B are $65^{\circ} 30^{\prime}$ and $75^{\circ} 15^{\prime}$ respectively. Calculate side c and angle C.
6. (a) Find the equation of the circle passing 7 through the point $(2,4)$ and centre at the intersection of the lines $x-y=4$ and $2 x+3 y=-7$.
(b) Find the equation of the ellipse if $\mathrm{e}=\frac{3}{4}$, foci 7 on y-axis, centre at origin and passing through $(6,4)$.

