BNA-011

B.Sc. (NAUTICAL SCIENCE)

Term-End Examination

June, 2013

BNA-011 : APPLIED MATHEMATICS

Time : 2 hours

0640

Maximum Marks : 70

Note: (i) Attempt any five questions. (ii) Use of scientific calculator is allowed.

1. (a) Find $\int_{1}^{11} f(x) dx$, where f(x) is given by the 7 following table, using Simpson's one - third rule.

x :	1	2	3	4	5	6	7	8	9	10	11
f(x):	543	512	501	489	453	400	352	310	250	172	95

- (b) Find the angle between two vectors 7 \overrightarrow{a} and \overrightarrow{b} having the same length $\sqrt{2}$ and their scalar product is -1.
- (a) A die is thrown 6 times. If "getting an odd 7 number" is a "success", what is the probability of getting :
 - (i) 5 successes
 - (ii) at least 5 successes

BNA-011

1

(b) For 10 observations on price (*x*) and supply (*y*), the following data were obtained (inappropriate units) : $\Sigma x = 130, \ \Sigma y = 220, \ \Sigma x^2 = 2288, \ \Sigma y^2 = 5506$ and $\Sigma xy = 3467$. Obtain the *y* on *x* line of regression.

7

3. (a) If
$$y=3 \cos(\log x) + 4 \sin(\log x)$$
 7
Show that $x^2y_2 + xy_1 + y = 0$.

(b) If
$$x = a$$
 (cos t+t sint) and $y = (sint - t cos t)$ 7

find
$$\frac{d^2 y}{dx^2}$$

4. (a) Evaluate
$$\int \sqrt{7x - 10 - x^2} dx$$
. 7

- (b) Using Integration, find the area of the region 7 bounded between the line x = 4 and the parabola $y^2 = 16x$.
- 5. (a) In a spherical triangle ABC, 7 angle $A = 124^{\circ} 21'$, side $AB = 41^{\circ} 30'$ and side $AC = 51^{\circ} 30'$; Calculate side BC using Haversine formula.
 - (b) In a quadrantal spherical triangle ABC 7 side b = 90°, angle A and B are 65° 30' and 75° 15' respectively. Calculate side c and angle C.

BNA-011

2

6. (a) Find the equation of the circle passing 7 through the point (2, 4) and centre at the intersection of the lines x - y = 4 and 2x + 3y = -7.

(b) Find the equation of the ellipse if $e = \frac{3}{4}$, foci 7

on y - axis, centre at origin and passing through (6, 4).