MCA(Revised)

Term-End Examination
June, 2013

MCS-013 : DISCRETE MATHEMATICS

Time : 2 hours
Maximum Marks : 50
Note: Question number 1 is compulsory. Attempt any three question from the rest.

1. (a) A carpenter has twelve patterns of chairs 3 and five patterns of tables. In how many ways can he make a pair of chair and table?
(b) If 30 books in a school contain a total of 3 61,327 pages, then show that one of the books must have at least 2045 pages.
(c) Prove that $\mathrm{A}-\mathrm{B}=\mathrm{A} \Rightarrow \mathrm{A} \cap \mathrm{B}=\mathrm{Q}$ 3
(d) Find the domain for which the functions 4 $f(x)=2 x^{2}-1$ and $g(x)=1-3 x$ are equal. Also find a domain for which the functions are not equal.
(e) Construct the truth table of $(7 p \vee q) \wedge(7 r \vee p)$. 4
(f) Show that $a \cdot b+a^{\prime} \cdot b^{\prime}=\left(a^{\prime}+b\right) \cdot\left(a+b^{\prime}\right) \quad 3$
2. (a) Use mathematical induction method to 4 prove that $1+3+5+\ldots+(2 n-1)=n^{2}$.
(b) Prove that n ! $(\mathrm{n}+2)=\mathrm{n}$! $+(\mathrm{n}+1)$!
(c) Consider the set of ordered pair of natural numbers $\mathrm{N} \times \mathrm{N}$ defined by :
$(a, b) R(c, d) \Leftrightarrow a+d=b+c$. Prove that R is an equivalence relation.
3. (a) Show that $(p \wedge q) \Rightarrow(p \vee q)$ is a tautology.
(b) Prove that the inverse of one-one onto mapping is unique.
(c) How many solutions does the equation $x_{1}+x_{2}+x_{3}=11$ have, where x_{1}, x_{2} and x_{3} are non negative integers ?
4. (a) Express the Boolean expression 4 $x y z^{\prime}+y^{\prime} z+x z^{\prime}$ in a sum of product form.
(b) Find the output of the given circuit.

(c) Show that : 3

$$
(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow \mathrm{q} \Rightarrow \mathrm{p} \vee \mathrm{q}
$$

5. (a) In how many ways a person can invite eight of his friends to a party by inviting at least one of them be a female. Considering that the person is having 15 male and 8 female friends.
(b) Let A be the set $\{1,2,3,4\}$. Which ordered pairs are in the relation
$\mathrm{R}=\{(\mathrm{a}, \mathrm{b}) \mid$ a divides b$\}$?
(c) Explain duality principle with the help of 3 example.
