BACHELOR OF COMPUTER APPLICATIONS (Revised)

Term-End Examination

June, 2013

BCS-012 : BASIC MATHEMATICS

Time : 3 hours
Maximum Marks : 100
Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Evaluate $\left|\begin{array}{ccc}x & y & z \\ x^{2} & y^{2} & z^{2} \\ x^{3} & y^{3} & z^{3}\end{array}\right|$:
(b) Show that the points $(a, b+c),(b, c+a)$ and (c, $a+b$) are collinear.
(c) For every positive integer n, prove that 5 $7^{n}-3^{n}$ is divisible by 4 .
(d) The sum of first three terms of a G.P. is $\frac{13}{12}$
and their product is -1 . Find the common ratio and the terms.
(e) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{\mathrm{e}^{x}-\mathrm{e}^{-x}}$
(f) Evaluate $\int \frac{\mathrm{d} x}{3 x^{2}+13 x-10}$
(g) Write the direction ratio's of the vector 5 $\overline{\mathrm{a}}=\mathrm{i}+\mathrm{j}-2 \mathrm{k}$ and hence calculate its direction cosines.
(h) Find a vector of magnitude 9, which is perpendicular to both the vectors $4 i-j+3 k$ and $-2 i+j-2 k$.
2. (a) Solve the following system of linear 5 equations using Cramer's Rule $x+y=0$, $y+z=1, z+x=3$.
(b) Find x, y and z so that $A=B$, where 5

$$
\mathrm{A}=\left[\begin{array}{ccc}
x-2 & 3 & 2 z \\
18 z & y+2 & 6 z
\end{array}\right], \mathrm{B}=\left[\begin{array}{ccc}
y & z & 6 \\
6 y & x & 2 y
\end{array}\right]
$$

(c) Reduce the matrix $\mathrm{A}=\left[\begin{array}{llll}1 & 0 & 2 & 1 \\ 2 & 1 & 3 & 2 \\ 1 & 3 & 1 & 3\end{array}\right]$ to its $\mathbf{1 0}$ normal form and hence determine its rank.
3. (a) Find the sum to n terms of the A.G.P.

$$
1+3 x+5 x^{2}+7 x^{3}+\ldots ; x \neq 1
$$

(b) Use De Moivre's theorem to find $(\sqrt{3}+\mathrm{i})^{3}$ 5
(c) If α, β are the roots of $x^{2}-4 x+5=0$ form an equation whose roots are $\alpha^{2}+2, \beta^{2}+2$.
(d) Solve the inequality $-2<\frac{1}{5}(4-3 x) \leq 8$ and graph the solution set.
4. (a) Evaluate $\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{x}$. 5
(b) If a mothball evaporates at a rate 5 proportional to its surface area $4 \pi r^{2}$, show that its radius decreases at a constant rate.
(c) Evaluate : $\int \frac{\mathrm{d} x}{4+5 \sin ^{2} x}$

5
(d) Find the area enclosed by the ellipse 5 $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
5. (a) Find a unit vector perpendicular to each of 5 the vectors $\bar{a}+\bar{b}$ and $\bar{a}-\bar{b}$ where $\bar{a}=i+j+k, \bar{b}=i+2 j+3 k$.
(b) Find the projection of the vector $7 \mathrm{i}+\mathrm{j}-4 \mathrm{k}$ on $2 \mathrm{i}+6 \mathrm{j}+3 \mathrm{k}$.
(c) Solve the following LPP by graphical 10 method.

Minimize : $z=20 x+10 y$
Subject to : $x+2 y \leq 40$
$3 x+y \geqslant 30$
$4 x+3 y \geqslant 60$
and $\mathrm{x}, \mathrm{y} \geqslant 0$

