No. of Printed Pages : 12

MCC-002

POST GRADUATE DIPLOMA IN CLINICAL CARDIOLOGY (PGDCC)

Term-End Examination

00330

June, 2012

MCC-002 : FUNDAMENTALS OF CARDIOVASCULAR SYSTEM - II

Time : 2 hours

Maximum Marks : 60

Note :

- (i) There will be multiple choice type of questions in this examination which are to be answered in <u>OMR Answer Sheets</u>.
- (ii) All questions are compulsory.
- (iii) Each question will have four options and only one of them is correct. Answers have to be marked in figures in the appropriate rectangular boxes corresponding to what is the correct answer and then blacken the circle for the same number in that column by using HB or lead pencil and not by ball pen in OMR Answer Sheets.
- (iv) If any candidate marks more than one option, it will be taken as the wrong answer and no marks will be awarded for this.
- (v) There will be 90 questions in this paper and each question carries equal marks.
- (vi) There will be no negative marking for wrong answers.
- (vii) No candidate shall leave the examination hall at least for one hour after the commencement of the examination.

1.	In severe aortic stenosis all the following ECHO findings are seen except one								
	(1)) Peak gradient 40 - 60 mm Hg			Effective orfice area <0.6				
	(3)	Aortic V max > 4 m/sec		(4)	Mean gradient > 50 mm Hg				
2.	Whi	ch is the best method to evaluate the s	evei	rity of	aortic stenosis with severe LV dysfunction				
	by E	CHO ?							
	(1)	Planimetry		(2)	Continuity equation				
	(3)	Pressure half time		(4)	All of the above				
3	In r	haumatic acrtic stances all the follow	vina	echo	findings are seen except one				
9.	(1) (3)	Systolic doming of aortic valve Mitral valve is usually involved	v 11 'B	(2) (4)	Closure line of aortic leaflets at centre Ascending aorta dilatation				
4.	In s	evere regurgitation all the following	echo	o findi	ings are seen except				
	(1)	Pressure half time > 250 msec		(2)	LV diastolic dimension > 7.5 cm				
	(3)	Effective regurgitant volume >0.30	cm	² (4)	Regurgitant fraction > 55 %				
5.	All	the following conditions are contrain	dica	ations	for mitral valvuloplasty except one				
	(1)	Left atrial thrombus	(2)	Mod	lerate mitral regurgitation				
	(3)	Wilkins score - 6	(4)	Con	comitant severe coronary artery disease				
6.	Will	kins score is calculated by all the follo	owir	ng fin	dings except				
	(1)	Valvular calcification		(2)) Left atrial thrombus				
	(3)	Leaflet mobility		(4)	Subvalvular thickening				
7.	36 y sinc exte at th follo	vears female has frequent history of e 2 weeks, her Echo showed marked t ending into the mid portion of the leaf ne base, subvalvular thickening exten owing mode of treatment is recomme	brea hick lets ding nde	athless ening , valve g up te d for	sness at night times and persistent cough of mitral leaf let margin, with calcification e leaflets move forwarding diastole mainly o the distal third of chordae. Which of the her ?				
	(1)	Balloon mitral valvuloplasty		(2)	Mitral valve replacement				
	(3)	Digoxin		(4)	Verapamil				

2

•

- 8. All the following features are indications for balloon aortic valvuloplasty except
 - (1) peak systolic pressure gradient at rest 40 60 mm Hg
 - (2) peak systolic pressure gradient at rest 50 60 mmHg with dyspnea
 - (3) low cardiac output regardless of the gradient
 - (4) peak systolic pressure gradient > 64 mm Hg

9. Balloon pulmonary valvuloplasty is indicated in which of the following condition ?

- (1) Resting peak gradient > 20 mmHg (2) Resting peak gradient > 40 mmHg
- (3) Severe infundibular stenosis (4) All pulmonary dyplastic valve patients
- 10. Mullins sheath is used for which of the following procedure ?
 - (1) Balloon aortic valvuloplasty (2) Balloon mitral valvuloplasty
 - (3) Balloon pulmonary valvuloplasty (4) For all the above procedure
- 11. All the following findings are seen by ECHO in constrictive pericarditis except
 - (1) Flattening of LV endocardial motion in mid and late diastole
 - (2) A respiratory variation of > 25% in mitral inflow E velocity
 - (3) Premature opening of aortic valve
 - (4) Dialatation of inferior vena cava

12. PA systolic pressure is measured by which one of the following formula from echo Doppler?

- (1) RV systolic pressure + RA systolic pressure
- (2) RA systolic pressue + RV diastolic pressure
- (3) TR max peak gradient + RA mean pressure
- (4) RA diastolic pressure + RV diastolic pressure
- 13. Ostium Secundum ASD is best seen by which one of the Echoview ?
 - (1) parasternal long axis view (2) supra stenal view
 - (3) subcostal short axis view (4) apical 5 chamber view

14. Which one of the following anatomical type of ASD is suitable for device closure ?

- (1) PAPVC (2) SVC type of ASD
- (3) Ostium primimum ASD (4) Fossa ovalis ASD

15.	Obli	Obligatory ASD is seen in all the following conditions except									
	(1)	Tricuspid atre	sia		(2)	Mitral atresi	a				
	(3)	Transposition	of grea	at artereis	(4)	Truncus artreriosis					
16.	Pulr	Ilmonary angiography is indicated in all			the foll	the following conditions except					
	(1)	Pulmonary embolism				Primary pulmonary hypertension					
	(3) Pulmonary vascular malformation			(4)	Pulmonary artery stenosis						
17.	For	digital substraction pulmonary angiog			ram how much contrast is recommended						
	(1)	60 ml	(2)	50 ml.	(3)	25 ml	(4)	10 ml			
18.	Abd	lominal aort <mark>a st</mark> a	arts at v	which level of v	ertebra	?					
	(1)	T 10	(2)	Т 12	(3)	T 11	(4)	L 1			
19.	Abd	lominal aortogra	m is ir	ndicated in all th	e following conditions except						
	(1) Abdominal aortic aneurysms		(2)	Aortic dissection							
	(3)	Renal artery stenosis			(4)	Atherosclerotic occlusive disease					
20.	One	French is equal	to hov	v many millime	ters ?		•				
	(1)	0.33 mm	(2)	0. 44 mm	(3)	0.22 mm	(4)	0.11 mm			
21.	Whi	ch of the follow	ing cor	ntrast is routinel	y used	in coronary ar	igiogram	?			
	(1)	high osmolar o	contras	st	(2)	low osmolar contrast					
	(3)	CO ₂			(4)	Gadolinium					
22.	X de	escent wave of R	A pres	sure tracing is c	lue to ?						
	(1)	right atrial sys	tole								
	(2)	pulling of the	tricusp	oid annulus by F	RV cont	raction					
	(3)	protrusion of t	ricuspi	d valve in to RA	I						
	(4)	due to ventric	ular sys	stole							
23.	In p	ulmonary capill	ary we	dge pressure tra	acing all	l the waveforn	ns are se	en except			
	(1)	a wave	(2)	c wave	(3)	v wave	(4)	x wave			

24.	Und	Under normal conditions the oxygen carrying capacity of hemoglobin is ?									
	(1)	2.36 ml O ₂ /g hen	noglobin	(2)	1.56 ml O ₂ /g he	emogl	obin				
	(3)	1.36 ml O ₂ /g hen	noglobin	(4)	3.36 ml O ₂ /g he	emogl	obin				
25.	One wood unit is equal to how many dyne - sec.cm ² ?										
	(1)	60 dyne - sec.cm ⁵	5	(2)	80 dyne - sec.cn	n ⁵					
	(3)	90 dyne - sec.cm ²	2	(4)	110 dyne - sec.c	m ²					
26.	Normal pulmonary vascular resistance is ?										
	(1)	20 - 130 dyne - se	ec.cm ⁵	(2)	130 - 160 dyne -	• sec.c	m ⁵				
	(3)	160 - 180 dyne - :	sec.cm ⁵	(4)	180 - 200 dyne -	• sec.c	m ⁵				
27.	All the following statements regarding LA pressure are correct except										
	(1)	a - wave is higher than v - wave									
	(2)	Mean LA pressure ranges from 2 - 12 mm Hg									
	(3)	LA pressure is higher than RA pressure									
	(4)	LA pressure traci	ng does not have c -	wave							
28.	What percent of patients have left dominant circulation in coronary angiogram ?										
	(1)	15%	(2) 20%	(3)	8%	(4)	25%				
29.	All the following statements are correct regarding coronary arteries except										
	(1)	SA nodal artery arises from RCA in 60% of patients									
	(2)	In 85% of patients AV nodal artery arises from right coronary artery									
	(3)	In 15% of patients balanced co-dominant coronary circulation is seen									
	(4)) In 8% of patients PDA is formed from both RCA and left circumflex coronary arteries									
30.	Gorlin formula is used to calculate which of the following ?										
	(1)	Shunt across the Atrial septal defect									
	(2)	Shunt across the	Ventricular septal de	fect			Ň				
	(3)	Shunt across Pate	ent ductus arteriosus				ч.				
	(4)	Trans mitral valv	e gradient								

.

- **31.** What is the mean step up of O_2 % saturation at right atriam for significant left to right shunt ?
 - (1) > 3 (2) > 7 (3) > 5 (4) > 11
- **32.** What is the mean step up of O_2 % saturation at great vessel for significant left to right shunt ?

(1) > 5 (2) > 3 (3) > 7 (4) > 11

33. Significant step up of O₂ saturation at atrial level is seen in all the following conditions except

- (1) Partial anomalous pulmonary venous drainage
- (2) VSD with tricuspid regurgitation
- (3) Ruptured sinus of valsalva
- (4) Primum atrial septal defect

34. All the following statements are correct except

- (1) Thalium 201 has half life of 6 hours
- (2) Thalium is cyclotron generated
- (3) Thalium emits low energy photons
- (4) Sensitivity of thalium in detection of coronary artery disease is 90%
- **35.** In pharmacological stress test to identify coronary artery disease all the following are used except
 - (1) Dobutamine (2) Adenosine (3) Dipyridamole (4) Nitroglycerine
- **36.** Which of the tracer is used in Positron emission tomography scan to identify the metabolism of myocytes ?
 - (1) 99m Sestamibi (2) 99m Tetrofosmin
 - (3) 18 Fluro Deoxy Glucose (4) Thalium

37. Which freqency probe is used in paediatric patients ?

- (1) 2 5 MHz (2) 7.5 10 MHz (3) 1 2.5 MHz (4) 10 12 MHz
- **38.** In which echo view coronary sinus is best seen ?
 - (1) Suprasternal view (2) Apical four chamber view
 - (3) Parasternal long axis view (4) Parasternal short axis view

MCC-002

- **39.** In Pseudonormal pattern of diastolic dysfunction all the following echo findings are seen except
 - (1) E/A = 1 1.5
 - (2) Deceleration time > 240 msec
 - (3) Isovolumetric relaxation time < 90 msec
 - (4) PVa velocity > 35 cm/sec
- 40. Which is the best view to visualize patent ductus arteriosus by Echo?
 - (1) Subcostal view (2) Suprasternal view
 - (3) high parasternal view (4) Apical 5 chamber view
- **41.** Calculate the PA systolic pressure in 4 year old child with VSD whose arm BP is 100 mm Hg and VSD gradient is 30mm Hg. The child has no associated congenital heart disease.
 - (1) 100 mm Hg (2) 30 mm Hg (3) 130 mm Hg (4) 70 mm Hg
- 42. In assessing RWMA (Regional wall motion abnormality) hypokinesia means
 - (1) Systolic wall thickness < 0.5 times diastolic thickness
 - (2) Systolic wall thickness 0.5 1.1 times diastolic thickness
 - (3) Systolic wall thickness 1.2 1.5 times diastolic thickness
 - (4) Systolic wall thickness > 1.5 times diastolic thickness

43. Morphological feature of a normal right ventricle by echo includes all following except

- (1) Moderator band (2) Infundibulum
- (3) Coarse septal surface (4) Fine apical trabeculations
- 44. In coronary angiography if the lumen diameter reduces by 50%, by how much does the cross sectional area reduces ?
 - (1) 50 % (2) 75 % (3) 80 % (4) 90 %
- 45. What is the estimated RA pressure if the IVC collapses > 50% on inspiration
 - (1) 0 5 mmHg (2) 5 10 mmHg (3) 10 15 mmHg (4) 15 20 mmHg
- 46. Swan Ganz catheter is used for
 - (1) Coronary angiography (2) Ventriculography
 - (3) Right heart pressure study (4) Temporary pacing

47.	Pig	ig tail catheter has :									
	(1)	End hole	(2)	Side holes							
	(3)	Both end hole and side holes	(4)	Neither end hole nor side holes							
48.	Right ventriculogram helps in the diagnosis of										
	(1)	Atrial septal defect	(2)	Pulmonary stenosis							
	(3)	Pulmonary regurgitation	(4)	Patent ductus arteriosus							
49.	The	preferred view for single plane left ven	ventriculography is								
	(1)	30° RAO (2) AP view	(3)	Lateral View (4) 30° LAO							
50.	Con	nplications of ventriculogram are all the	e follov	ving except :							
	(1)	Arrhythmias	(2)	Endocardial staining							
	(3)	Embolism	(4)	Mitral regurgitation							
51.	. Alternate investigations for contrast ven			phy are the following except							
	(1)	Echocardiography	(2)	Electrocardiogram							
	(3)	Electromechanical mapping	(4)	Magnetic resonance imaging							
52.	Des	cending thoracic aortogram helps in the	e diagn	osis of all the following except							
	(1)	Coarctation of aorta	(2)	Patent ductus arteriosus							
	(3)	Thoracic aortic aneurysm	Aortic stenosis								
53.	Pulr	nonary angiography is used in the diag	nosis c	of:							
	(1)	Pulmonary embolism	(2)	Patent ductus arteriosus							
	(3)	Pulmonary stenosis	(4)	Ventricular septal defect							
54.	In tl	ne right atrial pressure wave form 'a' w	ave is	due to							
	(1)	Right ventricular systole	(2)	Right atrial contraction							
	(3)	Tricuspid valve closure	(4)	Ventricular filling							
55.	Mea	n left atrial pressure is :									
	(1)	10 - 15 mm of Hg	(2)	8 - 14 mm of Hg							
	(3)	2 - 12 mm of Hg	(4)	2 - 6 mm of Hg							

To diagnose atrial septal defect the oxygen step up at atrial level in a single sample run must be :									
(1)	≥ 11 %	(2)	≥ 15 %	(3)	≥ 5 %	(4)	≥ 8 %		
For	mixed venous oxy	/gen c	content the form	ula is th	ne mean of				
(1)	2 SVC O ₂ + 1 IV	/C O ₂		(2)	3 SVC O ₂ + 1	IVC O ₂			
(3)	1 SVC O ₂ + 1 IV	/C 0 ₂		(4)	2 SVC O ₂ + 3 IVC O ₂				
Follo	owing catheters are used for coronary angiogram except								
(1)	Sones catheter		Y	(2)	Judkins catheter				
(3)	Tiger Radial cat	heter		(4)	Pig tail cathete	er			
In co	oronary lesion ass	essme	ent 50% diamete	er loss c	an be equated t	0			
(1)	75% area loss	(2)	80% area loss	(3)	90% area loss	(4)	70% area loss		
The	average size of le	ft mai	in coronary arte	ery is					
(1)	$5.5 \pm 0.5 \text{ cm}$			(2)	$6.0 \pm 0.5 \text{ cm}$				
(3)	$4.5 \pm 0.5 \text{ cm}$			(4)	$4.0 \pm 0.5 \text{ cm}$				
For	coronary angiopla	asty fo	ollowing stents	are used	d except :	_			
(1)	Drug eluting ste	ents		(2)	Balloon mounted stents				
(3)	Bare metal sten	ts		(4)	Self expendab	le stent	S		
Crit	ical aortic stenosis	s has a	a valve area of						
(1)	$\leq 0.7 \text{ cm}^2$	(2)	$\leq 1.0 \text{ cm}^2$	(3)	$\leq 0.5 \text{ cm}^2$	(4)	$\leq 0.9 \text{ cm}^2$		
Pati	ents suitable for p	percut	aneous balloon	mitral v	valvuloplasty ar	e the fo	ollowing except		
(1)	Symptomatic pa	atients	s with valve are	ea of < 1	l.5 cm ²				
(2)	Younger patien	ts wit	h significant mi	itral ster	nosis				
(3)	Pregnant wome	en wit	h mitral stenosi	is					
(4)	Patients with le	ft atri	al thrombus						
	To d be: (1) (1) (3) For (1) (3) For (1) (3) For (1) (3) For (1) (3) Critt (1) (3) Critt (1) (3) (4)	To diagnose atrial sep be: (1) \geq 11 % For mixed venous oxy (1) 2 SVC O ₂ + 1 IV (3) 1 SVC O ₂ + 1 IV (3) 1 SVC O ₂ + 1 IV Following catheters at (1) Sones catheter (3) Tiger Radial cat In coronary lesion ass (1) 75% area loss The average size of let (1) 5.5 \pm 0.5 cm (3) 4.5 \pm 0.5 cm (3) 4.5 \pm 0.5 cm (3) Bare metal stem (1) Drug eluting stem (3) Bare metal stem (1) \leq 0.7 cm ² Patients suitable for patient (3) Pregnant wome (4) Patients with let	To diagnose atrial septal derives: (1) $\geq 11 \%$ (2) For mixed venous oxygen of (1) 2 SVC O ₂ + 1 IVC O ₂ (3) 1 SVC O ₂ + 1 IVC O ₂ (3) 1 SVC O ₂ + 1 IVC O ₂ Following catheters are use (1) Sones catheter (3) Tiger Radial catheter In coronary lesion assessme (1) 75% area loss (2) The average size of left mar (1) 5.5 \pm 0.5 cm (3) 4.5 \pm 0.5 cm For coronary angioplasty for (1) Drug eluting stents (3) Bare metal stents Critical aortic stenosis has (1) $\leq 0.7 \text{ cm}^2$ (2) Patients suitable for percut (1) Symptomatic patients (2) Younger patients wit (3) Pregnant women wit (4) Patients with left atria	To diagnose atrial septal defect the oxygen be : (1) $\geq 11 \%$ (2) $\geq 15 \%$ For mixed venous oxygen content the form (1) $2 \text{ SVC O}_2 + 1 \text{ IVC O}_2$ (3) $1 \text{ SVC O}_2 + 1 \text{ IVC O}_2$ Following catheters are used for coronary (1) Sones catheter (3) Tiger Radial catheter In coronary lesion assessment 50% diameter (1) 75% area loss (2) 80% area loss The average size of left main coronary arter (1) $5.5 \pm 0.5 \text{ cm}$ (3) $4.5 \pm 0.5 \text{ cm}$ (3) $4.5 \pm 0.5 \text{ cm}$ For coronary angioplasty following stents (1) Drug eluting stents (3) Bare metal stents Critical aortic stenosis has a valve area of (1) $\leq 0.7 \text{ cm}^2$ (2) $\leq 1.0 \text{ cm}^2$ Patients suitable for percutaneous balloon (1) Symptomatic patients with valve area (2) Younger patients with significant main (3) Pregnant women with mitral stenosis (4) Patients with left atrial thrombus	To diagnose atrial septal defect the oxygen step up be: (1) $\geq 11 \%$ (2) $\geq 15 \%$ (3) For mixed venous oxygen content the formula is the (1) $2 \text{ SVC } O_2 + 1 \text{ IVC } O_2$ (2) (3) $1 \text{ SVC } O_2 + 1 \text{ IVC } O_2$ (4) Following catheters are used for coronary angiograming (1) Sones catheter (2) (3) Tiger Radial catheter (4) In coronary lesion assessment 50% diameter loss of (1) 75% area loss (2) 80% area loss (3) The average size of left main coronary artery is (1) $5.5 \pm 0.5 \text{ cm}$ (2) (3) $4.5 \pm 0.5 \text{ cm}$ (4) For coronary angioplasty following stents are used (1) Drug eluting stents (2) (3) Bare metal stents (4) Critical aortic stenosis has a valve area of (1) $\leq 0.7 \text{ cm}^2$ (2) $\leq 1.0 \text{ cm}^2$ (3) Patients suitable for percutaneous balloon mitral stenosis (3) Pregnant women with mitral stenosis (4) Patients with left atrial thrombus	To diagnose atrial septal defect the oxygen step up at atrial level in be: (1) $\geq 11 \%$ (2) $\geq 15 \%$ (3) $\geq 5 \%$ For mixed venous oxygen content the formula is the mean of (1) $2 \text{ SVC O}_2 + 1 \text{ IVC O}_2$ (2) $3 \text{ SVC O}_2 + 1 \%$ (3) $1 \text{ SVC O}_2 + 1 \text{ IVC O}_2$ (4) $2 \text{ SVC O}_2 + 3 \%$ Following catheters are used for coronary angiogram except (1) Sones catheter (2) Judkins cathete (3) Tiger Radial catheter (4) Pig tail catheter (1) 75% area loss (2) 80% area loss (3) 90% area loss The average size of left main coronary artery is (1) $5.5 \pm 0.5 \text{ cm}$ (2) $6.0 \pm 0.5 \text{ cm}$ (3) $4.5 \pm 0.5 \text{ cm}$ (4) $4.0 \pm 0.5 \text{ cm}$ For coronary angioplasty following stents are used except : (1) Drug eluting stents (2) Balloon mound (3) Bare metal stents (4) Self expendable Critical aortic stenosis has a valve area of (1) $\leq 0.7 \text{ cm}^2$ (2) $\leq 1.0 \text{ cm}^2$ (3) $\leq 0.5 \text{ cm}^2$ Patients suitable for percutaneous balloon mitral valvuloplasty art (1) Symptomatic patients with valve area of < 1.5 cm^2 (2) Younger patients with significant mitral stenosis (3) Pregnant women with mitral stenosis (4) Patients with left atrial thrombus	To diagnose atrial septal defect the oxygen step up at atrial level in a single be: (1) ≥ 11 % (2) ≥ 15 % (3) ≥ 5 % (4) For mixed venous oxygen content the formula is the mean of (1) 2 SVC O ₂ + 1 IVC O ₂ (2) 3 SVC O ₂ + 1 IVC O ₂ (3) 1 SVC O ₂ + 1 IVC O ₂ (4) 2 SVC O ₂ + 3 IVC O ₂ Following catheters are used for coronary angiogram except (1) Sones catheter (2) Judkins catheter (3) Tiger Radial catheter (4) Pig tail catheter In coronary lesion assessment 50% diameter loss can be equated to (1) 75% area loss (2) 80% area loss (3) 90% area loss (4) The average size of left main coronary artery is (1) 5.5 ± 0.5 cm (2) 6.0 ± 0.5 cm (3) 4.5 ± 0.5 cm (4) 4.0 ± 0.5 cm For coronary angioplasty following stents are used except : (1) Drug eluting stents (4) Self expendable stents (3) Bare metal stents (4) Self expendable stents Critical aortic stenosis has a valve area of (1) ≤ 0.7 cm ² (2) ≤ 1.0 cm ² (3) ≤ 0.5 cm ² (4) Patients suitable for percutaneous balloon mitral valvuloplasty are the for (1) Symptomatic patients with valve area of <1.5 cm ² (2) Younger patients with significant mitral stenosis (3) Pregnant women with mitral stenosis (4) Patients with left atrial thrombus		

•

MCC-002

9

P.T.O.

- Inoue technique is used for **64**. (1)Mitral valvuloplasty (2)Pulmonary valvuloplasty (3) Aortic valvuloplasty (4) Coronary Angioplasty Severe pulmonary valvular stenosis has a transvalvular gradient of **65**. (1)> 80 mm of Hg (2) > 100 mm of Hg (3) > 120 mm of Hg (4) > 110 mm of Hg The 'Radiopharmaceuticals' used as tracers in cardiology are the following except 66. (1)Thallium (2)Technetium Platinum (4) (3) Sestamibi **67**. In nuclear myocardial scan, fixed defects indicate : (1)Ischaemia (2) Normal myocardium (3) Infarcted myocardium (4) Hypertrophied myocardium All the following statements are correct in relation to hibernating myocardium except **68**. (1)It is viable (2) It is recoverable (3) It is dysfunctional (4) It is scarred **69**. Pharmacological stress agents used for radionuclide myocardial perfusion imaging are the following except (2) Dipyridamol (1)Dobutamine (3) Adenosine (4) Adrenalin 70. Of the given probes, the best resolution in echocardiography is obtained in the probe with the frequency of (1)2.5 m z (2)3.5 m z (3) 5.0 m z (4)6.0 m z 71. In echocardiography, parasternal long axis view does not visualise (1)Mitral valve (2)Aortic valve (3)Left atrium (4) Tricuspid valve 72. In apical 5 chamber view, the following structure is not visualized : (1)Left atrium Ascending aorta (3) (2)Pulmonary artery (4) Right ventricle 73. The number of crystals in a transducer for pulse wave Doppler is (1)Two (2)Three (3) Four (4) None 74. In calculating the mitral valve area by pressure half time, the mitral valve area of 1cm² will have a pressure half time equal to :
 - (1) 250 ms (2) 220 ms (3) 200 ms (4) 240 ms

75.	Velo	Velocity of flow of 4m ² across aortic valve indicates :										
•	(1)	Severe aortic	stenosis		(2)	Severe aortic regurgitation						
	(3)	Moderate ao	rtic steno	sis	(4)	Mild aortic st	enosis					
76.	Doppler Echocardiographic parameters of left ventricular diastolic function assessmen all the following except									ent are		
	(1)	Mitral in flo	w E/A ra	tio	(2)	Mitral E deceleration time						
	(3)	Tissue Dopp	oler at mit	ral annulus	(4)	Isovolumetric	contrac	ction ti	me			
77.	Normal mitral E decelaration time is											
	(1)	200-280 ms	(2)	160-240 ms	(3)	80-120 ms	(4)	120- 1	160 m	IS		
78.	In tl exce	In the evaluation of ischaemic heart disease, 2D echocardiography can assess the following except :										
	(1)	Degree of co	oronary ai	tery stenosis	(2) Regi	(2) Regional wall motion abnormality						
	(3)	Detection of	complica	ations	(4) Glob	al LV systolic	and dia	stolic f	unctio	on		
79.	79. In the echocardiographic analysis of regional wall motion, the left ventricle is divid the following segments							ed into				
	(1)	20	(2)	12	(3)	16	(4)	10				
80.	The	location of ac	quired ve	entricular defe	ct in acut	te myocardial i	nfarctio	n is				
	(1)	In the centre	e of infar	ction								
	(2)	(2) In the normal myocardium										
	(3)	(3) Junction of infarcted with normal myocardium										
	(4)	Opposite of	infarction	n								
81.	The	most specific	echocard	iographic feat	ure of ca	rdiac tampona	de is :					
•	(1)	(1) Early diastolic collarse of RV				Abnormal ventricular septal motion						
	(3)	Dilated infe	rior vena	cava	(4)	Late diastolic	c RA col	llapse				
0.7	T		niconditio	the respirator	, maniatia	n of mitral infl	ow E ve	alocity	will 4)e		
82.	In c	constructive pe	ricarditis	the respiratory			UW E VE	(4)	•••••• L	n. 100/		
	(1)	> 40%	(2)	≥25%	(3)	≥ 15%		(4)	2	10%		
мс	C-00	2			11					P.T.O.		

83. In a normal adult the cross sectional area of mitral valve orifice is

(1) $4 - 6 \text{cm}^2$ $> 6 \text{ cm}^2$ (2) $2 - 4 \text{ cm}^2$ (3) $1 - 3 \text{ cm}^2$ (4)

The echocardiographic features of mitral stenosis are the following except : 84.

- (1)Dilated left atrium
- (2)Dilated left ventricle
- (3) "Hockey stick" appearance of anterior mitral leaflet
- (4)Fish mouth orifice

All the following echocardiographic features indicate severe mitral regurgitation (MR) except 85.

- (1)Pulmonary vein systolic flow reversal
- (2)MR jet area ≥ 8 cm²
- (3) Colour flow area > 20% of LA size
- (4) Vena contracta > 6mm

86. In a patient with severe aortic regurgitation the ratio of jet area to LVOT area will be

- (1) $\geq 60\%$ (2) $\geq 80\%$ (3) \geq 70% (4) $\geq 40\%$
- In the absence of tricuspid regurgitation mean pressure gradient across tricuspid valve is 87. significant if it is more than
 - (1)1 mm of Hg (2) 1.5 mm of Hg (3) 2.0 mm of Hg (4) 2.5 mm of Hg
- 88. Sinus venosus atrial septal defect is best visualized in
 - (1)Parasternal short axis view Subcostal short axis view (2)
 - (3)Sub costal long axis view (4)Apical four chamber view

Perimembranous ventricular septal defect can be assessed in all the views except 89.

- (1)Parasternal short axis view (2) Apical five chamber view
- (3)Suprasternal view (4) Subcostal short axis view
- 90. Right ventricular systolic pressure can be calculated from
 - (1)Tricuspid regurgitation jet (2)
 - (3) Pulmonary flow velocity (4) Pulmonary regurgitation

MCC-002

- Tricuspid diastolic flow