No. of Printed Pages : 11

MIA-005 (F2F)

M.Sc. IN ACTUARIAL SCIENCE (MSCAS)

Term-End Examination

June, 2012

MIA-005 (F2F) : STOCHASTIC MODELLING AND SURVIVAL MODELS

 Time : 3 hours
 Maximum Marks : 100

 Note : In addition to this paper you should have available the ACTUARIAL table and your own electronic calculator.

SECTION-A

_(Answer *any five* questions)

1. List the benefits and limitations of modelling in 8 actuarial work.

For a stochastic process Xn with time space J and state space S, define the term :

(a)	(i)	Stationary	1
	(ii)	Weakly Stationary	1
	(iii)	Increment	1
	(iv)	Markov property	1
(b)	(i)	Define a Poisson process with rate λ .	1
	(ii)	Define a compound Poisson process.	1
	(iii)	Explain why the compound poisson process has the markov property ?	2

MIA-005 (F2F)

2.

00

5. A life insurance company prices its long-term sickness policies using a three - state Markov model in continuous time. The states are healthy (H), ill (I) and dead (D). The force of transition in the model are $\sigma_{HI} = \sigma$, $\sigma_{IH} = \rho$, $\sigma_{HD} = \mu$, $\sigma_{ID} = \nu$ and they are assumed to constant over time.

For a group of policyholders observed over a 1 - year period, there are :

23 transitions from state H to State I ;

15 transitions from state I to state H;

3 deaths from state H;

5 death from state I.

The total time spent in state H is 652 years and the total time spent in state I is 44 years.

- (a) Write down the likelihood function for these data.
- (b) Derive the maximum likelihood estimate $\mathbf{2}$ of σ .
- (c) Estimate the standard deviation of $\tilde{\sigma}$, the **2** maximum likelihood estimator of σ .
- 6. A No claim Discount system operated by a motor insurer has the following four levels.
 - Level 1 : 0% discount
 - Level 2 : 25% discount
 - Level 3 : 40% discount
 - Level 4 : 60% discount

MIA-005 (F2F)

3

The rules for moving between these levels are as follows:

- Following a year with no claims, move to the next higher level, or remain at level 4.
- Following a year with one claims, move to the next lower level, or remain at level 1.
- Following a year with two or more claims, move down two levels, or move to level 1 (from level 2) or remain at level 1.

For a given policyholder in a given year the probability of no claims is 0.85 and the probability of making one claim is 0.12.

(a) Write down the transition matrix of this No-Claims Discount process.

1

5

- (b) Calculate the probability that a policyholder 2 who is currently at level 2 will be at level 2 after two years.
- (c) Calculate the long-run probability that a policyholder is in discount level 2.
- (a) Explain the term "undergraduation" and 3 "overgraduation".
 - (b) List the possible dangers to a life company 5 of using undergraduated or overgraduated mortality rates.

MIA-005 (F2F)

SECTION-B

(Answer any four questions)

8. Consider the following time - inhomogeneous Markov jump process with transition rates as shown below :

- (a) Write down the generator matrix at time t. 2
- (b) Write down the Kolmogorov backward **3** differential equations for $P_{33}(s,t)$ and P_{13} (s,t).
- (c) Using the technique of separation of 4 variables, or otherwise, show that the solution of the differential equation for $P_{33}(s,t)$ is :

 $P_{33}(s,t) = \exp[-0.25(t^2 - s^2)]$

(d) Show that the probability that the process 6
 visits neither state 2 nor state 4 by time t, given that it starts in state 1 at time 0, is :

$$\frac{8}{7}e^{-0.075t^2} - \frac{1}{7}e^{-0.25t^2}$$

MIA-005 (F2F)

P.T.O.

(a) Show that if the force of mortality μ_{x+t} ($0 \le t \le 1$) is given by :

4

2

$$\mu_{x+t} = \frac{q_x}{1+t.q_x}$$

this implies that deaths between exact ages x and x+1 are uniformly distributed.

(b) Studies of the lifetimes of a certain type of electric light bulb have shown that the probability of failure, $q_{0'}$ during the first day of use is 0.05 and after the first day of use the " force of failure". μ_{x} is constant at 0.01.

- (i) Calculate the probability that a light bulb will fail within the first 20 days.
- (ii) Calculate the complete expectation of 7life (in days) of :
 - (A) a one-day old light bulb.
 - (B) a new light bulb.
- (iii) Comment on the difference between 2 the complete expectations of life calculated in (ii) (A) and (B).

MIA-005 (F2F)

6

9.

- 10. A life insurance company has carried out a mortality investigation. It followed a sample of independent policyholders aged between 50 and 55 years. Policyholders were followed from their 50th birthday until they died, withdrew from the investigation while still alive, or reached their 55th birthday (whichever of these events occured first).
 - (a) Describe the types of censoring that are present in this investigation.
 - (b) An extract from the data for 12 policyholders is shown in the table below. Use these data to calculate the Nelson -Aalen estimate of the survival function.

	Last age at which life was	Reason for exit	
Life	observed		
	Years	Month	
_1	50	9	Died
2	51	3	Withdrew
3	51	6	Died
4	51	6	Died
5	51	6	Withdrew
6	52	9	Withdrew
7	53	3	Withdrew
8	54	3	Died
9	54	6	Died
10	55	0	Reached age 55
11	55	0	Reached age 55
12	55	0	Reached age 55

(c) Determine an approximate 95% confidence interval for your estimate of the survival function.

7

7

3

11. The following model for the force of mortality for a life insurance company's annuitants has been proposed :

 $\mu(t,i) = (0.015 - 0.0001t) \exp [\alpha(x_i - 70) + \beta y_i + \gamma z_i]$ where

 $\mu(t,i) =$ force of mortality for the ith life in calendar year 2000 + t.

 $x_i = age of the ith life$

 $y_i = \begin{cases} 1 & \text{life is smoker} \\ 0 & \text{life is non - smoker} \end{cases}$

 $zv = \begin{cases} 1 & \text{life is male} \\ 0 & \text{life is female} \end{cases}$

 α , β , γ are the parameter of the model.

The following data have been observed over the calendar year 2003 :

Risk characteristic	Number of annuitant	Number dying
Male non - smoker, average age 65	800	6
Male smoker average age 60	200	5
Female non - smoker, average age 70	450	2
Female Smoker, average age 65	150	1

MIA-005 (F2F)

You can assume that the number of annuitants in each class remained constant throughout the investigation period, and that the average age for each class can be treated as representing the value of x_i for each individual in that class.

- (a) Explain why this model is a proportional 2 hazards model.
- (b) Explain the importance of subdividing the data by age, sex and smoking status, and explain whether you think each of the parameters α, β and γ would be likely to be positive or negative.
- (c) Calculate the force of mortality for female non smoker with average age 70 in 2007, according to this model.
- (d) (i) Obtain an expression for the partial likelihood based on the given data expressing your answer in terms of α, β and γ only.
 - (ii) State how you would estimate the parameters of the model using the partial likelihood.
- 12. (a) Describe the circumstances under which it 5 would be appropriate to graduate the rates in a mortality investigation using a mathematical function.

MIA-005 (F2F)

P.T.O.

1

8

(b) A graduation of a set of assured lives 10 mortality data has been carried out and you are given the following results :

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Age x	Initial Exposed to risk E _r	Actual deaths θ _x	Graduated mortality rate q _r	Expected death E _x q _x	Standard deviation $\sqrt{E_{\chi}\hat{q}_{\chi}(1-\hat{q}_{\chi})}$	Standardised Deviation (3)-(5) (6)
50	35000	161	0.004810	168.3	12.94	-0.5641
51	40000	205	0.005340	213.6	14.58	- 0.5898
52	45000	260	0.005928	266.8	16.28	- 0.4177
53	50000	344	0.006579	329.0	18.08	0.8296
54	55000	418	0.007300	401.5	19.96	0.8267
55	60000	506	0.008097	485.8	21.95	0.9203
56	50000	463	0.008977	448.8	21.09	0.6733
57	40000	388	0.009948	397.9	19.85	- 0.4987
58	30000	318	0.011017	330.5	18.08	- 0.6914
59	25000	296	0.012194	304.8	17.35	- 0.5072
60	20000	251	0.013489	269.8	16.31	- 1.1527
Total	450,000	3610		3616.8	<u> </u>	

Carry out a serial correlation test (at lag 1) on these data, and state your conclusion.

13. A large life office is investigating the recent mortality experience of its term assurance policyholders. It has been decided to graduate the data by reference to a standard table using the

formula
$$\frac{q_x}{q_x} = a x + b$$

where q_{χ}^{s} is the rate for the standard table.

MIA-005 (F2F)

- (a) Outline the rate considerations that you 4 would take into account in choosing an appropriate standard table.
- (b) Explain how you would check whether the **3** above formula was suitable ?

8

- (c) Describe briefly how you would estimate a and b in the formula using ?
 - (i) a weighted least square method.
 - (ii) a maximum likelihood method.

MIA-005 (F2F)