M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination
June, 2012

MMTE-006 : CRYPTOGRAPHY

Time : 2 hours
Maximum Marks : 50
Note : Answer any five questions. Calculators are not allowed.

1. (a) Check that $f(x)=x^{2}+x-1 \in Z_{3}[x]$ is a 5 primitive polynomial.
(b) For the initial segment of bits 01100100 of 5 a sequence of period 15 , find the recurrence that generates it.
2. (a) Explain the Runs test for random sequences. 5

Apply the test for the following sequence :
111010001110110010010110100010000001010100110
0100110001100111110110111111101011011010
11100100111100110001110001010010010
110101001110100101101001110100
1101100010
You may use the following values :
$x^{2}{ }_{0.05,3}=7.81473, x^{2}{ }_{0.05,4}=9.48773$,
$\chi^{2}{ }_{0.05,5}=11.0705$.
(b) If $f(x)=\left(x^{3}-2 x^{2}-14 x-5\right)$ and 5 $\mathrm{g}(x)=\left(x^{3}-x^{2}-17 x-15\right)$ are polynomials in $\mathrm{Q}(x)$, use the extended Euclidean algorithm to find $\mathrm{Q}(x)$ and $\mathrm{R}(x)$ in $\mathrm{Q}(x)$ such that $\mathrm{Q}(x) f(x)+\mathrm{R}(x) \mathrm{q}(x)=\mathrm{h}(x)$ where $h(x)$ is the gcd of $f(x)$ and $g(x)$. The values at the end of first iteration are given below:
$\mathrm{T}_{1}(x)=x^{3}-x^{2}-17 x-15$,
$\mathrm{Q}_{1}(x)=0, \mathrm{R}_{1}(x)=1$
$\mathrm{T}_{2}(x)=-x^{2}+3 x+10, \mathrm{Q}_{2}(x)=1, \mathrm{R}_{2}(x)=-1$
3. (a) A 64 bit key for the DES algorithm is as follows :

10000011	11001000
11101100	10101101
10011101	10101000
11110100	10001001

The key permutation table is as follows :

57	49	41	33	25	17	9	1	58	50	42	34	26	18
10	2	59	51	43	35	27	19	11	3	60	52	44	36
63	55	47	39	31	23	15	7	62	54	46	38	30	22
14	6	61	53	45	37	29	21	13	5	28	20	12	4

The table of key shifts is as follows:

Round	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Shift	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

Key selection table is as follows :

14	17	11	24	1	5	3	28	15	6	21	10
23	19	12	4	26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40	51	45	33	48
44	49	39	56	34	53	46	42	50	36	29	32

(i) Check whether the key is error free using the parity bits. Give reasons for your answer.
(ii) Find the keys for the first two rounds.
(b) . Decrypt the following cipher text which was encrypted using the Vigenere cipher with the keyword "ORDERS".
"GLVKVLCDRVIGK".
Is the Vigenere cipher a transposition cipher or a substitution cipher ? Justify your answer.
4. (a) Explain the CBC and CFB modes of 4 operation of a block cipher.
(b) Find $17^{6}(\bmod 61)$ using repeated squaring 3 algorithm.
(c) Find a generator of $Z^{*}{ }_{17}$.
5. (a) Which of the following statements are true 6 or false? Give reasons.
(i) Hash functions are invertible.
(ii) A stream cipher can be constructed from block cipher.
(iii) Every one way function can be used as hash function.
(b) Explain the (Fermat) Pseudo prime test. Prove that, if a natural number n fails the pseudo prime test for a base b, then it fails the test for at least half of the possible bases $\mathrm{bt}(\mathrm{Z} / \mathrm{nZ})^{*}$.
6. (a) Use the congruence $294^{2} \equiv 10^{2}(\bmod 1349)$ to 4 find a non-trivial factorisation of 1349.
(b) For a RSA system $n=391=17.23$, and the encryption exponent is $\mathbf{e}=17$. Find the decryption exponent. You may make use of the following calculation :
$352=20.17+12,17=12+5,12=5.2+2$, $5=2.2+1$.
(c) A plain text starting with f yields a cipher 3 text starting with PQ when encrypted with affine cipher. Find the key to the affine cipher.

