M.Sc. MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE (MACS)

Term-End Examination
June, 2012

MMTE-005 : CODING THEORY

Time : $\mathbf{2}$ hours
Maximum Marks : 50
Note: Do any five questions from question 1 to 6. Use of Calculator is not allowed.

1. (a) Let C be the binary linear block code having generator matrix
$G=\left[\begin{array}{llllll}1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right]$
(i) Find all the code words of C .
(ii) Find parity check matrix of C . 1
(iii) Find all the code words of the dual 3
code of C.
(b) Define convolutional code and give an 3 example of convolutional code.
2. (a) Let C be the binary code with the following 4 generator matrix :
$G=\left[\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1\end{array}\right]$
Find the weight distribution of C and hence find the weight enumerator polynomial.
(b) Let C be the binary code with generator matrix.

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

Decode the following received words:
(i) $[1,1,0,1,0,1,1]$
(ii) $[0,1,1,0,1,1,1]$
(iii) $[0,1,1,1,0,0,0]$
3. (a) State the two way APP decoding algorithm. 3
(b) Given that β is the primitive element and 4 $x^{3}+2 x+1$ is its minimal polynomial in $\frac{\mathrm{F}_{3}[x]}{\left\langle x^{3}+2 x+1\right\rangle}$, minimal polynomial of β^{2} is $x^{3}+x^{2}+x+2$ and the minimal polynomial of β^{4} is $x^{3}+x^{2}+2$, construct a ternary BCH code of length 26 and design distance 5.
(c) Make the multiplication table for the finite 3
field $\frac{\mathbf{F}_{2}[x]}{\left\langle x^{2}+x+1\right\rangle}$.
4. (a) Find all irreducible polynomials of degree $1,2,3$ and 4 over F_{2}.
(b) Write all the possible generator polynomials of a $[7,4]$ cyclic code. Obtain the generator matrix and parity check matrix corresponding to any one of the generating polynomials.
5. (a) If $f(x) \in \mathrm{Z}_{4}[x]$ is a basic irreducible polynomial 4 show that $f(x)$ is a primary polynomial.
(b) Prove that duadic codes of length n over $F_{q} \quad 6$ exist if and only if q is a square moduls n.
6. (a) Let C be the $(16,3,4)$ LDPC code with the 6 parity check matrix given below :

1	1	1	1										

Decode the code word [1000010110100100] using hallagher hard decision decoding algorithm.
(b) Find the 3 - cyclotomic cosets moduls 9.2
(c) Define a Reed-Solomon code. Also give an 2 example of a Reed Solomon code.

