No. of Printed Pages : 4

MMTE-005

M.Sc. MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE (MACS)

Term-End Examination

June, 2012

MMTE-005 : CODING THEORY

Time : 2 hours

00113

Maximum Marks : 50

- **Note**: Do any five questions from question 1 to 6. Use of Calculator is not allowed.
- 1. (a) Let C be the binary linear block code having generator matrix

 $G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$

- (i) Find all the code words of C. **3**
- (ii) Find parity check matrix of C. **1**
- (iii) Find all the code words of the dual 3 code of C.
- (b) Define convolutional code and give an 3 example of convolutional code.

MMTE-005

P.T.O.

2. (a) Let C be the binary code with the following generator matrix :

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Find the weight distribution of C and hence find the weight enumerator polynomial.

(b) Let C be the binary code with generator matrix.

	[1	0	0	0	1	0	1]
	0	1	0	0	1	0	1
G =	0	0	1	0	0	1	1
	0	0	0	1	0	1	1

Decode the following received words :

- (i) [1, 1, 0, 1, 0, 1, 1]
- (ii) [0, 1, 1, 0, 1, 1, 1]
- (iii) [0, 1, 1, 1, 0, 0, 0]

3.

- (a) State the two way APP decoding algorithm.
 (b) Given that β is the primitive element and x³ + 2x + 1 is its minimal polynomial in F₃ [x]

 (x³+2x+1)
 , minimal polynomial of β² is x³ + x² + x + 2 and the minimal polynomial of β⁴ is x³ + x² + 2, construct a ternary BCH code of length 26 and design distance 5.
- (c) Make the multiplication table for the finite

field
$$\frac{\mathbf{F}_2[x]}{\langle x^2 + x + 1 \rangle}$$

MMTE-005

2

4

6

3

4

3

- 4. (a) Find all irreducible polynomials of degree 6 1, 2, 3 and 4 over F_2 .
 - (b) Write all the possible generator polynomials 4 of a [7,4] cyclic code. Obtain the generator matrix and parity check matrix corresponding to any one of the generating polynomials.
- 5. (a) If $f(x) \in \mathbb{Z}_4[x]$ is a basic irreducible polynomial **4** show that f(x) is a primary polynomial.
 - (b) Prove that duadic codes of length n over F_q **6** exist if and only if q is a square moduls n.
- 6. (a) Let C be the (16, 3, 4) LDPC code with the 6 parity check matrix given below :

1	1	1	1	1	1	1	1				_				
								1	1	1	1				
												1	1	1	1
1				1			_	1				1			
	1				1				1				1		
		1				1				1				1	
			1				1				1				1
1					1					1			•		1
	1					1	ĺ				1	1			
		1					1	1					1		
			1	1					1					1	

MMTE-005

P.T.O.

3

Decode the code word [1000010110100100] using hallagher hard decision decoding algorithm.

2

- (b) Find the 3 cyclotomic cosets moduls 9.
- (c) Define a Reed-Solomon code. Also give an 2
 example of a Reed Solomon code.