M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)
 Term-End Examination

June, 2012

MMTE-004 : COMPUTÉR GRAPHICS

Time : 11/2 hours
Maximum Marks : 25
Note: Question No. 1 is compulsory. Attempt any three questions out of 2-5. Use of calculator is not allowed.

1. State whether the following statements are true or false. Justify your answer.
(a) The focusing system in a CRT is needed to force the electron beam to converge into a small spot as it strikes the phosphor.
(b) Boundary fill algorithm is suitable for regions with boundary having more than one colour.
(c) Perspective projection is an affine transformation.
(d) A 2×2 matrix $T=\left[\begin{array}{ll}\frac{1-t^{2}}{1+t^{2}} & \frac{2 t}{1+t^{2}} \\ \frac{-2 t}{1+t^{2}} & \frac{1-t^{2}}{1+t^{2}}\end{array}\right]$
represents a rotation.
(e) The simultaneous shearing along both x-axis and y-axis is equal to the composition of shear along x-axis followed by shear along y-axis.
2. (a) Using the Bresenham circle algorithm do two iteration to find the pixel location approximating the first octant of a circle having a centre at $(2,3)$ and a radius of 2 units.
(b) Magnify the triangle $P(0,0), \mathrm{Q}(2,2)$ and

2 $R(10,4)$ to four times its size while keeping $R(10,4)$ fixed.
3. (a) Transform the scene in the world coordinate2 system with the view point at $(3,3,3)$. The view plane normal vector is $(-1,-1,-1)$ and the view up vector is $(0,0,1)$.
(b) Reflect the pyramid $\mathrm{A}(1,0,0), \mathrm{B}(0,1,0)$, 3 $C(0,0,1)$ and $D(0,0,0)$ about yz-plane.
4. (a) Use the midpoint method and symmetry 3 considerations to scan convert the parabola $y=x^{2}$ over the interval $-1 \leq x \leq 1$. Do upto 3 iterations.
(b) Explain the two character generation methods. Given a character set, which method will you prefer in case you are asked to generate characters with ten different sizes? Justify your answer with appropriate reasons.
5. Find the equation of the Bezier curve which passes through $(0,0)$ and $(-4,2)$ and controlled through $(14,10)$ and $(4,0)$.

