M.Sc. (MATHEMATICS WITH APPLICATIONS
 IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination
June, 2012
\section*{MMTE-003 : PATTERN RECOGNITION AND IMAGE PROCESSING}

Time : $\mathbf{2}$ hours

Maximum Marks : 50
Note : Attempt any five questions. Each question carries equal marks.

1. (a) Explain why discrete histogram3 equalization does not in general yield a flat histogram?
(b) Show that a second pass of histogram 3 equalization will produce exactly the same result as the first pass.
(c) Propose a gray level slicing algorithm 4 capable of producing the 2-nd bit plane of an 8 -bit monochrome image.
2. (a) Given that :

$$
g(x, y)=\frac{1}{\mathrm{MN}} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1}\{f(m, n) h(x+m, y+n)\}
$$

where f and g are real images and h is a spatial filter :
obtain $\mathrm{G}(u, v)$, in terms of $\mathrm{F}(u, v)$, and $\mathrm{H}(u, v)$, the 2-D Fourier transform of $\mathrm{g}(x, y)$.
(b) Describe homomorphic filtering. Explain why the filtering scheme is effective for the applications it is used.
3. (a) Explain in detail the adaptive mean and 4 median filters.
(b) Obtain mean and variance of the following 6 noise pdfs :

$$
p(Z)=\left\{\begin{array}{cc}
a e^{-a z} & ; Z \geqslant 0 \tag{i}\\
0 & ; Z<0
\end{array}\right.
$$

$$
p(Z)=\left\{\begin{array}{cl}
\frac{1}{b-a} & ; a \leq Z \leq b \tag{ii}\\
0 & ; \text { otherwise }
\end{array}\right.
$$

$$
p(Z)=\left\{\begin{array}{l}
P_{a} ; \mathrm{Z}=a \tag{iii}\\
P_{b} ; \mathrm{Z}=b \\
0 ; \text { otherwise }
\end{array}\right.
$$

4. (a) Using 0,1 or -1 as coefficient values give the form for eight operators that measure gradients of edges oriented in eight directions : E, NE, N, NW, W, SW, S and SE. Specify the gradient direction of each mask.
(b) Explain the Graph Theoretic technique for edge detection and linking.
5. (a) Explain in detail Otsu's method for global 5 thresholding.
(b) A bullet is 2.5 cm long, 1 cm wide and its 5 range of speed is $750 \pm 250 \mathrm{~m} / \mathrm{s}$. The bullet in flight is captured by a camera that exposes the scene for K sec and the bullet occupies 10% of the horizontal resolution of 256×256 frames.

Propose methods for :
(i) Automatic segmentation of the bullet.
(ii) Automatic determination of speed of the bullet.
6. (a) Explain the Lempal - Ziv - Welch coding 5 algorithm. What types of redundancies does it remove?
(b) Apply the perceptron algorithm to the following pattern classes :

$$
\begin{aligned}
& \mathrm{W}_{1}=\left\{(0,0,0)^{\mathrm{T}},(1,0,0)^{\mathrm{T}},(1,0,1)^{\mathrm{T}},(1,1,0)^{\mathrm{T}}\right\} . \\
& \mathrm{W}_{2}=\left\{(0,0,1)^{\mathrm{T}},(0,1,1)^{\mathrm{T}},(0,1,0)^{\mathrm{T}},(1,1,1)^{\mathrm{T}}\right\} . \\
& \text { Let } \mathrm{C}=1 \text { and } \mathrm{W}(1)=(-1,-2,-2,0)^{\mathrm{T}} .
\end{aligned}
$$

Sketch the decision surface.

