M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) (MACS)
 M.Sc. (MACS)

Term-End Examination
June, 2012
00613

MMTE-001 : GRAPH THEORY

Time : 2 hours Maximum Marks : 50

Note: Question No. 1. is compulsory. Answer any four from the remaining six (2-7). Calculators and similar devices are not allowed.

1. Are the following statements is true or false ? Give reasons for your answers.
(a) If G is isomorphic to H , then the complement of G is isomorphic to the complement of H .
(b) If the minimum degree $\delta(G) \geqslant 2$, then G contains a cycle.
(c) If G has a spanning tree, then G is connected.
(d) If $\chi(G)=n$, then G contains K_{n} as a subgraph.
(e) Every Eulerian graph is 2 - connected.
2. (a) Draw a graph G with. $\operatorname{rad}(G)<\operatorname{diam}(G)<2 \operatorname{rad}(G)$.
(b) Draw the dual of the following graph:

(c) For the following graph G find the following:
(i) $\kappa^{\prime}(G) \kappa^{\prime}(G)$
(ii) A separating set S with $|S|=\kappa$

3. (a) Draw a graph with six vertices and 9 edges 4 which is
(i) Planar
(ii) Non planar
(b) Draw a graph with n vertices, $\mathrm{n}-1$ edges but having a cycle.
(c) Use Havel-Hakimi theorem to check 4 whether the sequence $\{5,5,4,4,3,3,2,2$, is graphic or not. If the sequence is graphical, construct a graph with the above degree sequence.
4. (a) State with justification, whether the following graphs are isomorphic or not.

(b) Draw a 3 connected graph whose edge connectivity is 4 and minimum degree is 5 .
(c) Find the chromatic number of the Graph 4 given below. If the chromatic number is k, give a k - colouring.

5. (a) Verify Brook's theorem for the following graph.

(b) State with justification whether the 3 following graph is Hamiltonian or not.

Is it Eulerian, justify your answer.
(c) Define a maximum matching and a perfect matching. Find a Maximum matching for the following graph G :

Does there exist a perfect matching for G ? Give justification.
6. (a) Find the adjacency matrix and the incidence matrix of the following graph -

(b) How many faces will a planer graph with degree sequence $3,3,3,3,3,3,6$ will have ?
(c) Find the center of the following tree :

7. (a) Prove that an edge e of a connected graph
G is a cut edge if and only if e belongs to every spanning tree.
(b) Find the minimum spanning tree for the following weighted graph using Prim's algorithm.

(c) If G is disconnected, show that \bar{G} is connected. Is the converse true? Give justification.

