No. of Printed Pages : 5

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) (MACS) M.Sc. (MACS)

Term-End Examination

June, 2012

00613

MMTE-001

MMTE-001 : GRAPH THEORY

Time : 2 hours

Maximum Marks : 50

- Note: Question No. 1. is compulsory. Answer any four from the remaining six (2-7). Calculators and similar devices are not allowed.
- Are the following statements is true or false? Give 10 reasons for your answers.
 - (a) If G is isomorphic to H, then the complement of G is isomorphic to the complement of H.
 - (b) If the minimum degree δ (G) \geq 2, then G contains a cycle.
 - (c) If G has a spanning tree, then G is connected.
 - (d) If χ (G) = n, then G contains K_n as a subgraph.
 - (e) Every Eulerian graph is 2 connected.
- (a) Draw a graph G with.
 rad (G) < diam (G) < 2 rad (G).

MMTE-001

1

P.T.O.

(c) For the following graph G find the following : 3

- (i) $\kappa'(G) \kappa'(G)$
- (ii) A separating set S with $|S| = \kappa$

- (a) Draw a graph with six vertices and 9 edges 4 which is
 - (i) Planar (ii) Non planar
 - (b) Draw a graph with n vertices, n-1 edges 2 but having a cycle.
 - Use Havel-Hakimi theorem to check 4
 whether the sequence {5, 5, 4, 4, 3, 3, 2, 2,}
 is graphic or not. If the sequence is graphical, construct a graph with the above degree sequence.

MMTE-001

4. (a) State with justification, whether the following graphs are isomorphic or not.

- (b) Draw a 3 connected graph whose edge connectivity is 4 and minimum degree is 5.
- (c) Find the chromatic number of the Graph given below. If the chromatic number is k, give a k - colouring.

MMTE-001

3

3

3

- 5.
- (a) Verify Brook's theorem for the following graph.

(b) State with justification whether the 3 following graph is Hamiltonian or not.

Is it Eulerian, justify your answer.

 (c) Define a maximum matching and a perfect 5
 matching. Find a Maximum matching for the following graph G :

Does there exist a perfect matching for G? Give justification.

6. (a) Find the adjacency matrix and the incidence matrix of the following graph -

MMTE-001

P.T.O.

4

- (b) How many faces will a planer graph with degree sequence 3, 3, 3, 3, 3, 3, 6 will have ?
- (c) Find the center of the following tree :

- 7. (a) Prove that an edge e of a connected graph 3G is a cut edge if and only if e belongs to every spanning tree.
 - (b) Find the minimum spanning tree for the following weighted graph using Prim's algorithm.

3

3

3

(c) If G is disconnected, show that \overline{G} is connected. Is the converse true ? Give justification.