No. of Printed Pages : 6

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

00453

MMT-008

June, 2012

MMT-008 : PROBABILITY AND STATISTICS

Time : 3 hours

Maximum Marks : 100

- *Note* : Question number 8 is compulsory. Answer any six questions from question number 1 to 7. Use of calculator is not allowed.
- 1. (a) Describe birth and death process. If $\lambda_k = \lambda$ 8 and $\mu_k = k_u$, $k \ge 0$, λ , $\mu > 0$ then show that the stationary distribution of the process always exists. Obtain steady state distribution of the process.
 - (b) Using following transition matrix for a 7 Markov chain find :
 - (i) Whether the chain is irreducible ? Why ?
 - (ii) Probabilities of ultimate return to the states.
 - (iii) Mean recurrence times of the states.

	0	1	2
0	0	1	0]
1	0 3⁄4 0	0	$\frac{1}{4}$
2	0	1	0

MMT-008

P.T.O.

- 2. (a) Consider a branching process $\{X_n\}$. Given $X_0 = 1$ and probability distribution of number of offsprings to any individual is geometric. Find the probability generating function (p.g.f) of $\{X_n\}$.
 - (b) Find Pⁿ and its limiting value if any for the 7
 P-matrix of a Markov chain given below.

5

3

$$P = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

(c) Suppose that families migrate to an area at a Poisson rate $\lambda = 2$ per week. The number of people in each family is independent and takes on values 1, 2, 3, 4 with respective

probabilities $\frac{1}{6}$, $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{6}$. Find the expected value and variance of the number of individuals migrating to this area during a fixed five week period.

3. (a) In a city 20% of the population were infected from TB. A diagnostic test reports positive in 95% cases when performed on TB infected person and reports positive in 15% cases when performed on non-infected person. An individual was choosen at random from the city and the test was performed. What is the probability that the result of the test was positive ? If it is positive report then what is the probability that the choosen individual was infected from TB ?

MMT-008

- (b) Customers arrive in a bank according to poission law at a rate 2 per five minutes. Service time in the bank follows exponential distribution with mean 2 minutes. Find :
 - (i) probability that bank is empty of customers.

7

- (ii) average number of customers in the bank when a customer arrives.
- (iii) expected time spent by a customer in the bank.
- **4.** (a) The joint p.d.*f* of two random variables **8** X and Y is given by :

$$f(x,y) = \frac{9(x+y+1)}{2(1+x)^4 (1+y)^4}; \qquad 0 \le x < \infty$$
$$0 < y < \infty$$

Find the marginal distributions of X and Y, and the conditional distribution of Y for X = x.

(b) In a renewal process, renewal period X_n is 7 iid Brenoulli (p). Show that the distribution of N_t will be negative binomial. What will be the renewal function for this process ?

5. (a) Let the vector *y* be distributed as
$$N_3(\mu, \Sigma)$$
, **8**

where
$$\mu = \begin{pmatrix} -3 \\ 2 \\ -1 \end{pmatrix}$$
 and $\Sigma = \begin{pmatrix} 3 & -3 & -1 \\ -3 & 6 & -1 \\ -1 & -1 & 2 \end{pmatrix}$

MMT-008

(b) Find a, b, c for which matrix A will be orthogonal :

7

$$A = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & a \\ \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & b \\ 0 & \frac{1}{\sqrt{2}} & c \end{pmatrix}$$

- 8. State whether following statements are *true* or false. Justify your answer. 2x5=10
 - (a) If two events A and B are non-null and mutually exclusive, then both the events are independent.
 - (b) Sum of elements of a 2×2 transition matrix of a Markov Chain is 4.
 - (c) The quadratic form $Q = 2x_1^2 3x_2^2 6x_1x_2$ is negative definite.
 - (d) Principal components depend on the scales used to measure the variables.
 - (e) If $X \sim Np(\mu, \Sigma)$ then the linear combinations of the components of X are normally distributed.

MMT-008

Find :

- (i) marginal distribution of $\begin{pmatrix} y_1 \\ y_3 \end{pmatrix}$
- (ii) conditional distribution of y_1 given y_2 , y_3 and of $y_1 y_2$ given y_3 .
- (iii) r_{12} and the partial correlation coefficient $r_{12,3}$.
- (b) From the samples of sizes 80 and 100 from two populations following summary statistics were obtained.

$$X_1 = \begin{pmatrix} 8\\4 \end{pmatrix} X_2 = \begin{pmatrix} 10\\4 \end{pmatrix} S_1 = \begin{pmatrix} 2 & 1\\1 & 5 \end{pmatrix} S_2 = \begin{pmatrix} 2 & 1\\1 & 6 \end{pmatrix}$$

Where X_1 and X_2 are the means and S_1 and S_2 are the standard deviations of two populations. Test equality of population means at 5% level of significance. Assume $\Sigma_1 = \Sigma_2$ given.

You may like to use the following values.

$$F_{2,177}^{(.05)} = 3.04$$
 $F_{2,100}^{(0.05)} = 3.1$
 $F_{2,80}^{(0.05)} = 3.15$

6. (a)
$$y \sim N_3 (\mu, \Sigma)$$
 where :

$$\mu = \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix} \text{ and } \Sigma = \begin{pmatrix} 2 & -2 & -1 \\ -2 & 5 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

MMT-008

P.T.O.

8

7

Obtain

7.

(i) distribution of c y where ,

$$\mathbf{C} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}$$

(ii) a linear combination Z = l' y such that $Z \sim N (0, 1)$.

(b) Evaluate Hotelling's
$$T^2$$
 for testing 7
Ho: $\mu' = [8, 10]$ from a sample expressed
by the following data matrix :

$$X = \begin{pmatrix} 2 & 8 & 6 & 8 \\ 12 & 9 & 9 & 10 \end{pmatrix} \text{ and specify the}$$

distribution of T².

(a) Variance -covariance matrix of three **8** variables X_1 , X_2 and X_3 is :

$$\Sigma = \begin{pmatrix} 20 & 6 & 5 \\ 6 & 31 & 4 \\ 5 & 4 & 43 \end{pmatrix}$$

The eigen values and corresponding eigen vectors are :

$$\lambda_1 = 45.9 \ a_1^{-1} \ (0.25, 0.34, 0.90)$$

 $\lambda_2 = 31.1 \ a_2^{-1} \ (- \ 0.28, - \ 0.87, 0.41)$

 $\lambda_3 = 17.0 \ a_3^{-1} \ (- \ 0.92, \ 0.36, \ 0.12)$

- (i) Obtain principal components.
- (ii) Obtain variances of principal components
- (iii) Show that total variation explained by principal components is equal to the total variances of the variables.
- (iv) Obtain proportion of variations explained by Ist two components.

MMT-008

P.T.O.