M.Sc. (MATHEMATICS WITH
 APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)
 Term-End Examination
 00823
 June, 2012

MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : $\mathbf{2}$ hours
Maximum Marks : 50
Note: Question No. 1 is compulsory. Do any four questions out of the remaining questions 2-7. All computations may be kept to 3 decimal places. Use of calculator is not allowed.

State whether the following statements are true or false. Justify your answer with the help of a short proof or a counter example.
1.
(a) The initial value problem $2 \times 5=10$

$$
\frac{d y}{d x}=\frac{3 y-4}{x}, y(0)=\frac{4}{3}
$$

has an infinity of solutions.
(b) The radius of convergence of the series

$$
1-2 x+3 x^{2}-4 x^{3}+\ldots \ldots \text { is unity. }
$$

(c) For the $\mathrm{b} v \mathrm{p}$
$\frac{d^{2} y}{d x^{2}}-9 y=3 x, y(0)=y(1)=0$
the Green's functions $G(x, \xi)$ satisfies

$$
\frac{d^{2} \mathrm{G}(x, \xi)}{d x^{2}}-9 \mathrm{G}(x, \xi)=3 x .
$$

(d) The second order Runga-Kutta method when applied to the IVP $y^{\prime}=-100 y$, $y(0)=1$ produces stable results for $0<\mathrm{h}<25$.
(e) In applying Milne's or Adam-Bashforth method we require four starting values of y which are calculated by means of Picards or Taylor series method only.
2. (a) The small oscillations of a certain system with two degrees of freedom are governed by the differential equations

$$
\frac{d^{2} x}{d \mathrm{t}^{2}}+3 x-2 y=0 ; \frac{d^{2} y}{d \mathrm{t}^{2}}=6 x-7 y .
$$

If $x=0, y=0, \frac{d x}{d \mathrm{t}}=3, \frac{d y}{d \mathrm{t}}=2$ when $\mathrm{t}=0$,
Obtain, using Laplace transform technique the expression for $x(\mathrm{t})$ and $y(\mathrm{t})$.
(b) Find the number of terms that are to be 4 retained if an accuracy of 10^{-10} is required in solving the initial value problem

$$
\left.\frac{d y}{d x}=x+y, y(0)=1, x \in\right] 0,1[
$$

by Taylors' series.
3. (a) Solve the following differential equation by power series method about $x=0$ $x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(x^{2}+2\right) y=0$.
(b) Express the functions:
$f(x)=0,-1<x \leq 0$
$=x, 0<x<1$
in Legendre expansion.
4. (a) Using Runge- Kutta method of fourth order find $y(0,8)$ taking $\mathrm{h}=0.1$, correct to three decimal places, if :

$$
\frac{d y}{d x}=y-x^{2}, y(0.6)=1.738
$$

(b) Prove that $\int_{0}^{1} x \mathrm{~J}_{n}(\alpha x) \mathrm{J}_{n}(\beta x) \mathrm{d} x=0$ where
α and β are distinct positive zeros of Bessel function $\mathrm{J}_{\mathrm{n}}(x), \mathrm{n} \geqslant 0$.
5. (a) Discuss stability of Euler's method for solving the differential equation $\frac{d y}{d x}=f(x, y)=\lambda y$ with initial condition $y\left(x_{0}\right)=y_{0}$.
(b) Show that:

5

$$
\int_{-1}^{1} x \mathrm{P}_{\mathrm{n}}(x) \mathrm{P}_{\mathrm{n}-1}(x) d x=\frac{2 \mathrm{n}}{4 \mathrm{n}^{2}-1}
$$

Where $P_{n}(x)$ is the Legendre Polynomial of order n.
6. (a) Solve the following boundry-value problem 5 by determining the appropriate Green's function via the method of variation of parameters. Express the solution as a definite integral.

$$
-\left(\frac{d^{2} y}{d x^{2}}+4 y\right)=f(x), y(1)=0, y^{\prime}(0)=0
$$

(b) Given $\frac{d y}{d x}=\frac{1}{2}\left(1+x^{2}\right) y^{2}$ and $y(0)=1$,
$y(0.1)=1.06, y(0.2)=1.12, \quad y(0.3)=1.21$, evaluate $y(0.4)$ using Milnes' predictorcorrector method.
7.
(a) Solve the Poissons' equation
$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=-10\left(x^{2}+y^{2}+1\right)$ over the square mesh with sides $x=0, y=0 ; x=3$, $y=3$ with $u=0$ on the boundry and mesh length 1 . Use five point formula.
(b) Find the Fourier cosine transform of:

$$
f(x)=\left\{\begin{array}{cc}
x, & 0<x<\frac{1}{2} \\
(1-x), & \frac{1}{2}<x<1 \\
0, & x>1 .
\end{array}\right.
$$

