No. of Printed Pages : 4

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) 0083 M.Sc. (MACS)

Term-End Examination

June, 2012

MMT-006 : FUNCTIONAL ANALYSIS

Time : 2 hours

Maximum Marks : 50

Answer question number 1 which is compulsory. Note : Attempt any four of the remaining six questions.

- Are the following statements true or false? Justify 1. your answer with the help of a short proof or a counter example. 5x2=10
 - The closed unit ball in l^2 is compact. (a)
 - Any complete subspace of a normed linear (b) space is closed.
 - (c) A finite dimensional normed linear space is necessarily reflexive.
 - (d) *l*' is not a Hilbert space.
 - A normal operator is self adjoint. (e)
- Suppose Y is a closed subspace of a normed 2. 4 (a) linear space X and $x_0 \notin Y$, $x_0 \in X$. Prove that there is a linear functional $f_0 \in X^1$ such that $f_0(x_0) = d(x_0, y)$, $f_0(Y) = 0$ and $||f_0|| = 1$.

MMT-006

P.T.O.

MMT-006

(b) Suppose $\|.\|_1$ and $\|.\|_2$ are two equivalent norms on a vector space X. If $(X, \|.\|_1)$ is complete, then show that so is $(X, \|.\|_2)$.

3

3

(c) Define f on C[0,1] by :

$$f(x) = \int_{0}^{\frac{1}{2}} x(t) dt, x \in C([0,1]]$$
. Prove that f is a

bounded linear functional on C[0,1].

3. (a) Define T:
$$l^2 \rightarrow l^2$$
 by $Tx(n) = \frac{1}{n}x(n)$, $n = 1, 2, ...$
Show that T is compact and positive with eigenvalues $\frac{1}{n}$, $n = 1, 2, ...$

- (b) Let X = l' and $A \in BL(x)$ be defined by 2 $A(x) = (0, x(1), x(2) \dots)$. Find $\sigma_i(A)$.
- (c) State and prove the Riesz Representation 5Theorem for Hilbert spaces.
- 4. (a) Give a bounded linear non zero map that is 4 not an open map. Does this contradict the open Mapping Theorem ? Justify your answer.
 - (b) If $\{e_n\}$ is an orthonormal basis for a Halbert 3 space H, prove that $||x||^2 = \sum |\langle x, e_n \rangle|^2$ for all x in H.

MMT-006

(c) Consider \mathbb{R}^2 and \mathbb{R}^3 with the Euclidean 3 norms. Compute || T || for T : $\mathbb{R}^2 \rightarrow \mathbb{R}^3$ defined by

T
$$(x_1, x_2) = (x_1, x_2, x_1 + x_2), x_1 \in \mathbf{R}.$$

- 5. (a) Prove that the dual space of a reflexive space 4 is also reflexive.
 - (b) Show that a bounded linear operator A on 3 complex Hilbert space H is self adjoint if and only if < Ax, x > is real for all x in H.
 - (c) If $x \perp y$, then show that ||x + y|| = ||x y||. 3
- 6. (a) Let $A \in BL(H)$ be a compact operator, then 3 show that A^*A is a compact
 - (b) Let X be a Banach space and let {T_n} be a sequence of bounded linear operators on X such that Tx = lim T_nx exists for all x in X. Show that T is a bounded linear operator on X.
 - (c) Give an example each : a self adjoint 4 operator ≠0, I and a unitary operator.
- 7. (a) Let X be a normed linear space such that its 5 dual X' is separable, then show that X is separable ? Is the converse true ? Justify your answer.

MMT-006

P.T.O.

3

3

(b) Let E₁ be a closed subspace and E₂ be a finite 3 dimensional subspace of a normed subspace
X. Prove that E₁ + E₂ is closed in X.

2

(c) Give an example of an unbounded linear operator. Justify your choice of example.

[•] MMT-006