M.Sc. (MATHEMATICS WITH
 APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)
 Term-End Examination
 June, 2012
 MMT-005 : COMPLEX ANALYSIS

Time : $1 \frac{1}{2}$ hours
Maximum Marks : 25

Note: Question 1 is compulsory. Attempt any three questions from question 2 to 5 . Use of calculator is not allowed.

1. State giving reasons whether the following statements are true or false :
(a) The image of the disc $|\mathrm{z}-\mathrm{i}| \leq 1$ under the
linear fractional transformation $T(z)=\frac{i}{z}$ is
contained in $|w| \geqslant \frac{1}{2}$.
(b) $f(z)=z^{2}+\bar{z}$ is nowhere analytic.
(c) $\mathrm{f}(\mathrm{z})=\sin \mathrm{h} z \cos \mathrm{~h} z$ is bounded function.
(d) The function $4(x, y)=\mathrm{e}^{4 x} \cos 2 \mathrm{y}$ is the real part of an analytic function.
(e) $\oint_{c} \frac{1}{z^{2}-3 z+2} \mathrm{dz}=\frac{1}{2}$, where C is the
circle $|z|=\frac{1}{2}$.
2. (a) Derive the formula

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos ^{2 n} t d t=\frac{1.3 .5 \ldots \ldots \ldots .(2 n-1)}{2.4 .6 \ldots \ldots .(2 n)}
$$

by integrating the function $\frac{1}{z}\left(z+\frac{1}{z}\right)^{2 n}$ around the unit circle $\mathrm{C}: \mathrm{z}=\mathrm{e}^{\mathrm{it}}(0 \leq \mathrm{t} \leq 2 \pi)$.
(b) Let $f(z)$ be analytic in a domain D. Prove2 that $f(z)$ is constant if imaginary part of $f(z)$ is constant.
3. (a) Find the upper bound for $\left|\oint_{c} f(z) \mathrm{d} z\right|$ where 1 $|f(z)| \leq 2$ on the circle $|z|=3$.
(b) Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{\cos \theta+2 \sin \theta+3}$.
4. (a) Expand $f(z)=\frac{z^{2}-2 z+2}{(z-2)}$ in a Laurent 3
series valid for the annular domain $|z-1|>1$.
(b) Evaluate $\oint_{\mathrm{c}} \frac{2 z+6}{z^{2}+4} d z$ where C is the circle 2

$$
|z-1|=2
$$

5. (a) Consider $f(z)=z(z-2)$ and the closed 3 circular region $R=\{z:|z| \leq 2\}$. Find points in R where $|f(z)|$ has its maximum and minimum values.
(b) Find the image of the triangle with vertices 2
at $-\frac{1}{\sqrt{2}}+\frac{i \sqrt{3}}{2},-\sqrt{2}$ and 0 under the
transformation $w=e^{\frac{i \pi}{4}}(z+\sqrt{2})$.
