MMT-004

M.Sc. (MATHEMATICS WITH APPLICATIONS 00773 IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

June, 2012

MMT-004 : REAL ANALYSIS

Time : 2 hours

Maximum Marks : 50

- Question no. 1 is compulsory. Do any four questions Note : out of questions no. 2 to 7.
- State, whether the following statements are 1. TRUE or FALSE. Give reasons for your answer.

5x2 = 10

- In a metric space every Cauchy sequence is (a) convergent.
- The function $f : \mathbf{R} \rightarrow \mathbf{R}^2$ defined by. (b)

 $f(x) = (x, x \sin \frac{1}{x})$ is not differentiable at x = 0.

The system $R: f \rightarrow g$ given by : (c)

$$g(t) = \int_{\infty}^{t} f(\tau) e^{-(t-\tau)} d\tau$$
 is stable.

MMT-004

P.T.O.

(d) The set $(0, \infty)$ is a bounded set in the metric space (\mathbf{R}, ρ) where :

 $\rho(x, y) = \min\{1, |x-y|\}$

- (e) Every Lebesgue integrable function is Riemann integrable.
- (a) Let X and Y be metric spaces. Show that a 5 map f: X→Y is continuous if and only if for every closed set V⊂Y, f⁻¹ (V) is closed in X.
 - (b) Find the derivative of the function *f* defined 3by :

$$f(x_1, x_2) = \left(x_1^2 - x_2, x_1 + 2x_2\right)$$
at the point (2, 3).

(c) Which of the following sets are closed in R^2 2 w.r.t. the standard metric ?

(i)
$$A = \{(x, y) \in \mathbb{R}^2 : xy = 0\}$$

(ii)
$$B = \{x, y\} \in \mathbb{R}^2 : x^2 + y^2 < 1\}$$

3. (a) State Faton's lemma. Using this lemma, 5 prove the following result :

Let E be a measurable set and let $\{f_n\}$ be an increasing sequence of measurable functions. Let f be defined by :

MMT-004

$$f(x) = \lim_{n \to \infty} f_n(x) \forall x \in E$$
. Then show

that :
$$\lim_{n \to \infty} \int_E f_n \, \mathrm{dm} = \int_E f \, \mathrm{dm}$$

(b) Define Fourier transform of a function f, 5 where $f \in L'(R)$. Show that, if $f \in L'(R)$, then its Fourier Transform \hat{f} is continuous on R.

4. (a) Let
$$h(t) = e^{-2t}$$
. Find the system response 3

to the input function
$$f(t) = \sum_{k=-2}^{2} \left(\frac{1}{2}\right)^{k} e^{i5kt}$$

- (b) Show that the finite sets are the only sets 2 which are compact in a discrete metric space.
- (c) If X is a connected metric space then, show 5 that any continuous function *f* on X to the discrete metric space {1, −1} is a constant function. Is the converse true ? Justify your answer.
- 5. (a) Verify implicit function theorem for the 3 function : $f(x, y, z) = x + y + z - \sin xyz$ at (0,0,0).
 - (b) Give an example of a vector valued function 2 $f: \mathbb{R}^4 \rightarrow \mathbb{R}^3$ for which the second order derivative exists.
 - (c) Show that for all $a, b \in R$, $m^{*}\{a, b\} = b-a$. 5

MMT-004

- 6. (a) Show that a metric space is complete if and 4 only every cauchy sequence in it has a convergent subsequence.
 - (b) Find the directional derivative of the 6 function $f: \mathbb{R}^4 \rightarrow \mathbb{R}^3$ defined by :

 $f(x, y, z, w) = (x^2y, xyz, x^2 + y^2 + zw^3)$ at a = (1, -2, 2) in the direction of V = (1, 0, -1, 2).

- 7. (a) Compute the Fourier Series of the function 5 f given by $f(t) = t^2$, $-\pi \le t \le \pi$.
 - (b) Obtain the second order Taylor Series 5expansion for the function :

 $f(x,y) = x + 2y + xy - x^2 - y^2$ at the point $a = \left(\frac{4}{3}, \frac{5}{3}\right).$

MMT-004