M.Sc. (MATHEMATICS WITH
- APPLICATIONS IN COMPUTER SCIENCE)
\section*{M.Sc. (MACS)}
Term-End Examination
June, 2012
MMT-003 : (ALGEBRA)

Time : 2 hours
Maximum Marks : 50
Note: Question no. 1 is compulsory. Answer any four questions from question no. 2 to question no. 6. Use of calculator is not allowed.

1. State, with reasons, which of the following 10 statements are true and which are false.
(a) The dihedral group D_{6} has exactly six sub groups of order 2.
(b) If F is a free group on two generators x and y, and $\mathrm{F}_{1} \subset \mathrm{~F}$ is a subgroup that does not contain x or y. Then F_{1} is not isomorphic to F.
(c) There is no transitive action of the group Z_{5} on Z_{6}.
(d) For any natural number n, $n>1,(n-1)!\equiv-1(\bmod n)$.
(e) There exists a group of order 12 with exactly two irreducible representations of degree 1.
2. (a) Show that a group of order 77 is cyclic.
(b) Let $F=Z_{13}$ and $\alpha=\sqrt[3]{\overline{10}}$ where $\overline{10} \in \mathbf{Z}_{13}$. 3

Find the minimal polynomial satisfied by α.
(c) Find a solution to the equation $6 x \equiv 7 \bmod 11$.

2
3. (a) Let F be any field. Check that the group 3 $\mathrm{Gln}(\mathrm{F})$ acts on $\mathrm{Mn}(\mathrm{F})$ by conjugation. Is the action transitive? Justify your answer.
(b) Let $\mathrm{F}=\frac{\mathrm{Z}_{5}[x]}{\left\langle x^{3}+3 x+2\right\rangle}$ and
$\alpha=x+\left\langle x^{3}+3 x+2\right\rangle \in \mathrm{F}$. Find α^{5}.
(c) Solve the simultaneous congruence.

5

$$
\begin{aligned}
& x \equiv 3 \bmod 7 \\
& x \equiv 5 \bmod 8 \\
& x \equiv 3 \bmod 5
\end{aligned}
$$

4. (a) Let $F=F_{5}$. Find the order of the conjugancy

$$
\text { class of }\left(\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right) \text { in } \mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)
$$

(b) Let $G=Z_{5} \times Z_{6} \times Z_{9} \times Z_{12}$. Find the 5 elementary divisors and invariant factors of G.
(c) Let P be a representation of a group G. Is 2 $\mathrm{g} \rightarrow \mathrm{p}(\mathrm{gt})$ is a representation of G. Justify your answer.
5. (a) Let $\mathrm{D}_{3}=\left\{x, y \mid x^{2}=1, y^{3}=1, x y x=y^{2}\right\}$.
defined by $\rho(y)=\left(\begin{array}{cc}\cos 2 \pi / 3 & -\sin 2 \pi / 3 \\ \sin 2 \pi / 3 & \cos 2 \pi / 3\end{array}\right)$

$$
\rho(x)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

(i) Check that ρ is a representation.
(ii) Find the character of ρ.
(b) Prove that the subgroup SO_{2} of SU_{2} is 3 conjugate to the subgroup of diagonal matrices.
(c) Show that $\sqrt{3} \notin Q[\sqrt{6}]$.
6. (a) Check if $81-7808-902-5$ is a valid ISBN 3 number.
(b) Let F be a field and $\alpha \in F$ be such that 4 $[F(\alpha): F]=5$. Show that $F(\alpha)=F\left(\alpha^{3}\right)$.
(c) Find the language $L(\Gamma)$ generated the 3 grammar

$$
\Gamma=\left(\{a\},\left\{g_{0}\right\},\left\{g_{o} \rightarrow a, g_{o} \rightarrow \mathrm{ag}_{0}\right\}, g_{0}\right)
$$

