No. of Printed Pages : 3

MMT-003

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) 6200 M.Sc. (MACS)

Term-End Examination

June, 2012

MMT-003 : (ALGEBRA)

Time : 2 hours

Maximum Marks : 50

- Question no. 1 is compulsory. Answer any four Note : questions from question no. 2 to question no. 6. Use of calculator is not allowed.
- State, with reasons, which of the following 1. 10 statements are true and which are false.
 - The dihedral group D_6 has exactly six sub (a) groups of order 2.
 - (b) If F is a free group on two generators x and y, and $F_1 \subset F$ is a subgroup that does not contain x or y. Then F_1 is not isomorphic to F.
 - There is no transitive action of the group Z_5 (c) on Z_6 .
 - For (d) any natural number n, n > 1, $(n-1)! \equiv -1 \pmod{n}$.
 - There exists a group of order 12 with exactly (e) two irreducible representations of degree 1.

MMT-003

- Show that a group of order 77 is cyclic. 2. 5 (a) Let $\mathbf{F} = \mathbf{Z}_{13}$ and $\alpha = \sqrt[3]{10}$ where $\overline{10} \in \mathbf{Z}_{13}$. (b) 3 Find the minimal polynomial satisfied by α . 2 (c) Find a solution to the equation $6x \equiv 7 \mod 11$. (a) Let F be any field. Check that the group 3 3. Gln (F) acts on Mn (F) by conjugation. Is the action transitive? Justify your answer. Let $F = \frac{Z_5[x]}{\langle x^3 + 3x + 2 \rangle}$ and (b) 2 $\alpha = x + \langle x^3 + 3x + 2 \rangle \in \mathbf{F}$. Find α^5 . (c) Solve the simultaneous congruence. 5 $x \equiv 3 \mod 7$ $x \equiv 5 \mod 8$
- 4. (a) Let $F = F_5$. Find the order of the conjugancy 3 class of $\begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}$ in GL₂ (F₅).

 $x \equiv 3 \mod 5$

- (b) Let $G = Z_5 \times Z_6 \times Z_9 \times Z_{12}$. Find the 5 elementary divisors and invariant factors of G.
- (c) Let P be a representation of a group G. Is $2 = g \rightarrow p(gt)$ is a representation of G. Justify your answer.

MMT-003

2

5

2

5.

(a) Let $D_3 = \{ x, y \mid x^2 = 1, y^3 = 1, xyx = y^2 \}$. consider the map $\rho : D_3 \to GL_2(\Omega)$

defined by
$$\rho(y) = \begin{pmatrix} \cos 2\pi/3 & -\sin 2\pi/3 \\ \sin 2\pi/3 & \cos 2\pi/3 \end{pmatrix}$$

$$\rho(x) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

- (i) Check that ρ is a representation.
- (ii) Find the character of ρ .
- (b) Prove that the subgroup SO_2 of SU_2 is 3 conjugate to the subgroup of diagonal matrices.
- (c) Show that $\sqrt{3} \notin Q\left[\sqrt{6}\right]$.
- 6. (a) Check if 81-7808-902-5 is a valid ISBN 3 number.
 - (b) Let F be a field and $\alpha \in F$ be such that 4 [F (α) : F] = 5. Show that F(α) = F(α ³).
 - (c) Find the language L(Γ) generated the 3 grammar

 $\Gamma = (\{a\}, \{g_o\}, \{g_o \rightarrow a, g_o \rightarrow ag_o\}, g_o)$

MMT-003