M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

 M.Sc. (MACS)

 M.Sc. (MACS)
 Term-End Examination

June, 2012

MMT-002 : LINEAR ALGEBRA

Time : $11 / 2$ hours
 Maximum Marks : 25

Note: Question No. 5 is compulsory. Answer any three questions from question No. 1 to 4 . Use of calculators is not allowed.

1. (a) Let $T: R^{4}-R^{3}$ be a linear transformation 2 given by :

$$
\mathrm{T}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
x_{1}-3 x_{2}+x_{3}+2 x_{4} \\
x_{1}-2 x_{2}+x_{3}-x_{4} \\
2 x_{1}-5 x_{2}+x_{4}
\end{array}\right] .
$$

Find the matrix of T with respect to the standard ordered basis of $T R^{4}$ and the basis

$$
\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\right\} \text { of } T R^{3}
$$

(b) Find an unitary matrix U such that $U^{*} A U$ is upper triangular, where
$A=\left[\begin{array}{lll}1 & 0 & 2 \\ 3 & 4 & 2 \\ 1 & 1 & 1\end{array}\right]$.
2. (a) Give an example, with justification, of two non-similar 3×3 matrices having the same determinant and trace.
(b) How many Jordan canonical forms can there be for a linear operator whose characteristic polynomial is $(x-3)^{3}(x-5)^{2}$, and why ?
(c) Give an example, with justification, of a normal matrix which is neither Hermitian, nor skew-Hermitian, nor unitary.
3. (a) Consider the predator-prey matrix of two

2
populations given by $\left[\begin{array}{cc}0.9 & 0.2 \\ 0.1 & 0.8\end{array}\right]$. Check whether both populations perish with time or not.
(b) Write the spectral decomposition as a linear combination of the projection matrices of the self adjoint operator on C^{3} whose matrix representation with respect to the standard basis is given by :

$$
\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

4. (a) Find the SVD for the matrix 4

$$
\left[\begin{array}{cc}
1 & -1 \\
0 & 1 \\
1 & 0
\end{array}\right]
$$

(b) Obtain $\operatorname{det}\left(\mathrm{e}^{\mathrm{A}}\right)$, where A is the matrix given in Question No. 3(b).
5. Which of the following statements are true? Give 10 reasons for your answers :
(a) If A is an $\mathrm{n} \times \mathrm{n}$ matrix with determinant 1 , then A is similar to I_{n}.
(b) There is a unique $\mathrm{n} \times \mathrm{n}$ matrix with spectral radius n .
(c) $(1,0,0),(1,-1,5),(2,3,1),(5,-1,3)$ form a Jordan chain of some $\operatorname{T\in L}\left(R^{3}\right)$.
(d) If all the eigenvalues of a square matrix are real, then the matrix is self - adjoint.
(e) Given any $m \times n$ matrix A, the eigenvalues of $A^{*} A$ are the same as those of $A A^{*}$.

