BACHELOR OF SCIENCE (B.Sc.)
Term-End Examination
June, 2012
PHYSICS

PHE-4 : MATHEMATICAL METHODS IN PHYSICS-I

Time : $\mathbf{1}^{1 / 2}$ hours
Maximum Marks : 25
B.Sc. EXAMINATION,

PHE-4 : MATHEMATICAL METHODS IN PHYSICS-I

\&

PHE-5 : MATHEMATICAL METHODS IN PHYSICS-II

Instructions :

1. Students registered for both PHE-4 \& PHE-5 courses should answer both the question papers in two separate answer books entering their entrolment number, colirse code and course title clearly on both the answer books.
2. Students who have registered for PHE-4 or PHE-5 should answer the relevant question paper after entering their enrolment number, course code and course title on the answer book.

Note: Attempt all questions. The marks for each question are indicated against it. Symbols have their usual meanings. You may use log tables.

1. Attempt any three parts :

(a) Determine the angle between the vectors

$$
\overrightarrow{\mathrm{A}}=-6 \hat{i}-4 \hat{j}+2 \hat{k} \text { and } \overrightarrow{\mathrm{B}}=\hat{i}-2 \hat{j}-\hat{k}
$$

(b) Calculate the volume of the parallelepiped formed by the vectors :

$$
\begin{aligned}
& \overrightarrow{\mathrm{A}}=\hat{i}+2 \hat{j}-\hat{k} \\
& \overrightarrow{\mathrm{~B}}=\hat{j}+\hat{k} \\
& \overrightarrow{\mathrm{C}}=\hat{i}-\hat{j}
\end{aligned}
$$

(c) Determine the unit vector normal to the surface $x^{2}+y^{2}+z^{2}=3$ at $(1,1,1)$.
(d) A frictionless bead slides down a vertical helix of radius R such that its position vector at time t is given by :

$$
\vec{r}(\mathrm{t})=a(\cos \omega t \hat{i}+\sin \omega t \hat{j})-\frac{1}{2} g t^{2} \hat{k}
$$

Determine its velocity and acceleration.
(e) The cylindrical coordinates $u_{1}=\rho, u_{2}=\phi$, $u_{3}=z$ are related to the Cartesian coordinates x, y and z as follows:

$$
\begin{aligned}
& x=\rho \cos \phi \\
& y=\rho \sin \phi \\
& z=z
\end{aligned}
$$

Show that the cylindrical coordinate system is orthogonal, i.e., $\mathrm{g}_{i j}(i \neq j)=0$ for all i and j.
2. A force acting on a particle is given by :

$$
\overrightarrow{\mathrm{F}}=-\mathrm{k} x \hat{i}-\mathrm{k} y \hat{j}
$$

Calculate the work done in moving the particle from $(1,1)$ to $(4,4)$ along the path $x=y$.

OR
Calculate the surface integral of a vector
$\overrightarrow{\mathrm{A}}=x \hat{i}+2 y \hat{j}+3 z \hat{k}$ over the surface of a sphere of radiue 2 by using Gauss's divergence theorem.
3. The average number of calls received in a BPO is

4 per ininute. Calculate the probability that not more than one call is received during one minute

OR

A continuous random variable X has the probability distribution

$$
\begin{array}{rlr}
\mathrm{P}(x) & =\frac{1}{\pi\left(1+x^{2}\right)}-1<x<1 \\
& =0 & \\
\text { otherwise }
\end{array}
$$

Calculate its mean.
4. The extension in a material is measured as a function of load in appropriate units and is given by :

Load (x)	0	1	2	3	4
Lxtension (y)	16	13	10	6	3

Obtain the least square fit to the data
OR

Derive an expression for the mean of the normal distribution

$$
n(x ; \bar{x}, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x-\bar{x}}{\sigma}\right)^{2}\right]
$$

पी.एच.ई.-4

विज्ञान स्नातक (बी.एस सी.) सत्रांत परीक्षा

जून, 2012
भौतिक विज्ञान

पी.एच.ई.-4 : भौतिकी में गणितीय विधियाँ-I

बी.एससी. परीक्षा,

पी.एच.ई-4 : भौतिकी में गणितीय विधियाँ-I

एवं
पी.एच.ई-5 : भौतिकी में गणितीय विधियाँ-II

निर्देश :

1. जो छात्र पी.एच.ई.-4 और पी.एच.ई.-5 दोनों पाठ्यक्रमों के लिए पंजीकृत हैं, दोनों प्रश्नपत्रों के उत्तर अलग-अलग उत्तर पुस्तिकाओं में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्यक्रम नाम साफसाफ लिखकर दें।
2. जो छात्र पी.एच.ई.-4 या पी.एच.ई.-5 किसी एक के लिए पंजीकृत हैं, अपने उसी प्रश्नपत्र के उत्तर, उत्तर-पुस्तिका में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्यक्रम नाम साफ-साफ लिखकर दें।
नोट : सभी प्रश्न करें। प्रत्येक प्रश्न के अंक उसके सामने दिए गए हैं। प्रतीकों के अपने सामान्य अर्थ हैं। आप लॉग सारणियों का प्रयोग कर सकते हैं।
3. कोई तीन भाग करें :
(a) निम्नलिखित सदिशों के बीच का कोण ज्ञात करें :
$\overrightarrow{\mathrm{A}}=-6 \hat{i}-4 \hat{j}+2 \hat{k}$ और $\overrightarrow{\mathrm{B}}=\hat{i}-2 \hat{j}-\hat{k}$
(b) निम्नलिखित सदिशों से बने समांतरषट्फलक का आयतन ज्ञात करें :
$\vec{A}=\hat{i}+2 \hat{j}-\hat{k}$
$\vec{B}=\hat{j}+\hat{k}$
$\overrightarrow{\mathrm{C}}=\hat{i}-\hat{j}$.
(c) बिंदु $(1,1,1)$ पर पृष्ठ $x^{2}+y^{2}+z^{2}=3$ के अभिलंबवत् एकक सदिश ज्ञात करें।
(d) एक घर्षण रहित मोती त्रिज्या R वाले एक उर्ध्वाधर हेलिक्स पर नीचे खिसक रहा है। समय t पर मोती का स्थिति सदिश निम्नलिखित है :
$\vec{r}(\mathrm{t})=a(\cos \omega t \hat{i}+\sin \omega t \hat{j})-\frac{1}{2} g t^{2} \hat{k}$
मोती का वेग और त्वरण ज्ञात करें।
(e) बेलनी निर्देशांक $u_{1}=p, u_{2}=\phi, u_{3}=z$ और कार्तीय निर्देशांक x, y, z के बीच निम्नलिखित संबंध हैं :

$$
\begin{aligned}
& x=\rho \cos \phi \\
& y=\rho \sin \phi \\
& z=z
\end{aligned}
$$

दिखाएं कि बेलनी निर्देशांक तंत्र लांबिक है, यानी कि : $\mathrm{g}_{i j}(i \neq j)=0$, सभी i और j के लिए।
2. एक कण पर लगने वाला बल निम्नलिखित है :

$$
\overrightarrow{\mathrm{F}}=-\mathrm{k} x \hat{i}-\mathrm{k} y \hat{j}
$$

कण को $x=y$ पथ के अनुदिश बिंदु $(1,1)$ से $(4,4)$ तक ले जाने में किया गया कार्य परिकलित करें।

अथवा

गाउस डाइवर्जेन्स प्रमेय का प्रयोग करते हुए, त्रिज्या 2 वाले एक गोले के पृष्ठ पर सदिश
$\overrightarrow{\mathrm{A}}=x \hat{i}+2 y \hat{j}+3 z \hat{k}$ का पृष्ठ समाकल परिकलित करें।
3. एक बी पी ओ में प्रति मिनट आने वाली कॉलों की औसत संख्या 4 है। यह प्रायिकता परिकलित करें कि प्रति मिनट एक से अधिक कॉल न आये।

अथवा

एक संतत यादृच्छिक चर X का प्रयिकता बंटन निम्नलिखित है :

$$
\begin{aligned}
\mathrm{P}(x) & =\frac{1}{\pi\left(1+x^{2}\right)}-1<x<1 \\
& =0 \quad \text { अन्यथा लिए }
\end{aligned}
$$

इसका माध्य परिकलित करें।
4. एक पदार्थ के विस्तरण को उचित इकाईयों में भार के फलन के रूप में मापा जाता है, और वह निम्नलिखित है :

भार (x)	0	1	2	3	4
विस्तरण (y)	16	13	10	6	3

इन आंकड़ों का न्यूनतम वर्ग आसंजन प्राप्त करें।
अथवा

प्रसामान्य बंटन

$$
n(x ; \bar{x}, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x-\bar{x}}{\sigma}\right)^{2}\right]
$$

के लिए माध्य का व्यंजक व्युत्पन्न करें।

BACHELOR OF SCIENCE (B.Sc.)

Term-End Examination
June, 2012
PHYSICS

PHE-5 : MATHEMATICAL METHODS IN PHYSICS-II

Tine : $11 / 2$ hours
Maximum Marks : 25
Note: Attempt all questions. The marks for each question are indicated against it. Symbols have their usual meanings.

1. Attempt any three parts :
$4 \times 3=12$
(a) Snow that the following equation is exact and solve it :

$$
e^{y} \mathrm{~d} x+\left(x e^{y}+2 y\right) \mathrm{d} y=0
$$

(b) Obtain the integrating factor of the following equation and solve it :

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{1}{x} y=3 x
$$

(c) Determine all the first and second order partial derivatives of the function

$$
f(x, y)=x^{2}-5 x y^{3}
$$

(d) Separate the following PDE into two ODEs.

$$
\left(\mathrm{E} \frac{\partial}{\partial t}-\mathrm{p} \frac{\partial}{\partial x}\right) \psi(x, t)=\mathrm{m} \psi(x, t)
$$

(e) Obtain the particular integral of

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y=3 x
$$

2. Expand the square wave $\mathrm{V}(x)$ given by :

$$
\begin{array}{rlrl}
\mathrm{V}(x) & =0 & -\pi<x<0 \\
& =\mathrm{V}_{0} & 0<x<\pi
\end{array}
$$

in Fourier series.

OR

Obtain the singular point of the following ODE and specify its nature :

$$
x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+x y=0
$$

Determine the indicial equation and its roots.
3. The electric potential in a power transmission line 7 along the x-axis satisfies the equation :

$$
\frac{\partial^{2} \mathrm{~V}}{\partial x^{2}}=\mathrm{RC} \frac{\partial \mathrm{~V}}{\partial t}
$$

Using the method of separation of variables, solve this equation for V under the following conditions :

$$
\begin{array}{lll}
\mathrm{V}(x, t)=0 & \text { at } & x=0 \\
\mathrm{~V}(x, 0)=\mathrm{V}_{0} & \text { at } & t=0 \\
\mathrm{~V}(x, t)=0 & \text { at } & x=\mathrm{L} \\
& \text { OR } &
\end{array}
$$

A particle of mass m falls freely under gravity in a liquid that offers a resistive force proportional to its velocity :

$$
f_{r e s}=-\gamma \frac{\mathrm{d} x}{\mathrm{dt}}
$$

Set up the equation of motion and solve it.

विज्ञान स्नातक (बी.एससी.)
सत्रांत परीक्षा
जून, 2012
भौतिक विज्ञान
पी.एच.ई.-5 : भौतिकी में गणितीय विधियाँ-II

समय : $11 / 2$ घण्टे

अधिकतम अंक : 25
नोट : सभी प्रश्न करें। प्रत्येक प्रश्न के अंक उसके सामने दिए गए हैं। प्रतीकों के अपने सामान्य अर्थ हैं।

1. कोई तीन भाग करें :
$4 \times 3=12$
(a) दिखाएँ कि निम्नलिखित समीकरण यथातथ है और हल

करें : $\quad e^{y} \mathrm{~d} x+\left(x e^{y}+2 y\right) \mathrm{d} y=0$
(b) निम्नलिखित समीकरण का समाकलन गुणक निक्रालें

और हल करें : $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{1}{x} y=3 x$
(c) निम्नलिखित फलन के सभी प्रथम और द्वितीय कोटि आंशिक अवकलज प्रात्त करें :
$f(x, y)=x^{2}-5 x y^{3}$
(d) निम्नलिखित आंशिक अवकल समीकरण को दो साधारण अवकल समीकरणों में पृथक्कृत करें :

$$
\left(\mathrm{E} \frac{\partial}{\partial t}-\mathrm{p} \frac{\partial}{\partial x}\right) \psi(x, t)=\operatorname{mit}(x, t)
$$

(e) निम्नलिखित समीकरण का विशेष समाकल ज्ञात करें :

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y=3 x
$$

2. निम्नलिखित वर्ग तरंग $\mathrm{V}(x)$ का फूरिए श्रेणी प्रसार प्राप्त करें :

$$
\begin{array}{rlrl}
\mathrm{V}(x) & =0 & -\pi<x<0 \\
& =\mathrm{V}_{0} & 0 & 0<x<\pi
\end{array}
$$

अथवा

समीकरण

$$
x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+x y=0
$$

का विचित्र बिंदु निर्धारित कर, उसे वर्गीकृत करें। इसका घातांकी समीकरण और उसके मूल प्राप्त करें।
3. x-अक्ष के अनुदिश एक विद्युत् संचरण लाइन में वैद्युत विभव 7 निम्नलिखित समीकरण को संतुष्ट करता है :
$\frac{\partial^{2} V}{\partial x^{2}}=R C \frac{\partial V}{\partial t}$
चर पृथक्करण विधि द्वारा समीकरण को हल करते हुए निम्नलिखित प्रतिबंधों के आधीन V प्राप्त करें :

$$
\begin{array}{ll}
\mathrm{V}(x, t)=0, & x=0 \text { के लिए } \\
\mathrm{V}(x, 0)=\mathrm{V}_{0}, & t=0 \text { के लिए } \\
\mathrm{V}(x, t)=0, & t=\mathrm{L} \text { के लिए }
\end{array}
$$

अथवा

द्रव्यमान m वाला एक कण एक द्रव में गुरुत्वाकर्षण के कारण गिर रहा है। कण के ऊपर लगने वाला प्रतिरोधी बल उसके वेग के समानुपाती है :

$$
f_{r e s}=-\gamma \frac{\mathrm{d} x}{\mathrm{dt}}
$$

गति का समीकरण लिखें और उसको हल करें।

