BACHELOR OF SCIENCE (B.Sc.)

Term-End Examination

June, 2012

PHYSICS

PHE-15 : ASTRONOMY AND ASTROPHYSICS

Time : $\mathbf{2}$ hours
Maximum Marks : 50
Note : Attempt all questions. Marks are shown against each question. Symbols have their usual meanings. You may use a calculator or log tables.

1. Attempt any five parts :
$2 \times 5=10$
(a) Express mass of the Earth in unit of M_{\odot}.

Take $M_{E}=6 \times 10^{24} \mathrm{~kg}$.
(b) The apparent magnitude of the sun is -26.81 and that of another star is -1.81 . How much brighter the sun is with respect to that star ?
(c). What is the diffraction limit of resolution of a 20 cm telescope. For wavelength $\lambda=500$ nm ?
(d) Two stars of spectral class 0 and A have temperatures $40,000 \mathrm{~K}$ and $10,000 \mathrm{~K}$, respectively. Draw their black body radiation curves.
(e) The temperature of chromosphere and corona is very high in comparison to that of photosphere. Why then is the photosphere the brightest of the three?
(f) Calculate the energy of electromagnetic radiation having 21 cm wavelength.
(g) Let M_{1} and M_{2} be the masses of two main sequence stars. If $M_{1}>M_{2}$ show that the star of mass M_{1} will have a shorter life span than the star of mass M_{2} on the main sequence.
(h) Estimate the distance that an emission cloud must have from the center of a Seyfert galaxy (having a central compact object of mass $10^{7} \mathrm{M}_{\odot}$) in order to produce a velocity of $10^{6} \mathrm{~ms}^{-1}$.
2. Attempt any two parts: $5 \times 2=10$
(a) The distance modulus of a star is -2.5 . At what distance (in PC) is it from us?
(b) Draw the celestial sphere showing the ecliptic, vernol equinox and automnal equinox. Determine the deactivation (δ) of ecliptic north pole.
(c) Estimate the mass of a star in thermal equilibrium whose average internal temperature is $10^{7} \mathrm{~K}$ and radius $7 \times 10^{8} \mathrm{~m}$. It is given that Boltzman constant, $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{Jk}^{-1}, \mathrm{~m}_{\mathrm{H}} \sim 1.67 \times 10^{-27} \mathrm{~kg}$ and $G=6.7 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$.
3. Attempt any two parts :
(a) The orbital period of Jupiter's satellite lo is 1.77 days. The semi-major axis of its orbit is $4.22 \times 10^{10} \mathrm{~cm}$. Calculate the mass of Jupiter. Assume that the Jupiter is very massive in comparison to lo .
(b) Describe briefly the solar corona. Explain 3+2 why its temperature is so high compared with that of the photosphere.
(c) Explain the atomic origin of emission and $3+2$ absorption spectra. List and explain two parameters of a star that can be estimated by analyzing these spectra.
4. Attempt any two parts : $5 \times 2=10$
(a) Name the various constituents of Inter stellar 1+4 gas. Describe the detection of graphite and silicate grains in ISM.
(b) Explain the hydrogen burning process in the $1+4$ main sequence stars. Obtain an expression for the main sequence life-time of a star.
(c) What is a Neutron star ? Explain with the $1+4$ help of a diagram, the emission of pulses from a neutron star.
5. Attempt any two parts :
(a) State the law which governs the variation of the surface brightness in the disc of a spiral galaxy with the distance from the centre of the galaxy. Show that the total light emitted by the disc is $2 \pi r^{2}{ }_{d}, I_{d}(0)$, where r_{d} is the scale length of the disc and $\mathrm{I}_{\mathrm{d}}(0)$ is the surface brightness at $r=0$.
(b) Explain the origin of broad-line and narrowline regions in a Seyfert galaxy.
(c) (i) State Hubble's law. How can this be used to get an estimate of the age of the universe?
(ii) Why is it necessary to propose the existence of dark matter ?

पी.एच.ई.-15

विज्ञान स्नातक (बी.एससी.)

सत्रांत परीक्षा
जून, 2012
भौतिक विज्ञान

पी.एच.ई.-15 : खगोलिकी और खगोल भौतिकी

समय : 2 घण्टे
अधिकतम अंक : 50
नोट : सभी प्रश्न करें। प्रत्येक प्रश्न के अंक उसके सामने दिए गए है। प्रतीकों के अपने सामान्य अर्थ हैं। आप कैलकुलेटर या लॉग सारणी का प्रयोग कर सकते हैं।

1. कोई पाँच भाग करें :
(a) पृथ्वी के द्रव्यमान को M_{\odot} की इकाई में व्यक्त करें।

$$
\mathrm{M}_{\mathrm{E}}=6 \times 10^{24} \mathrm{~kg} \text { लें। }
$$

(b) सूर्य का दृष्ट कांतिमान -26.81 है और एक अन्य तारे का दृष्ट कांतिमान -1.81 है। उस तारे के सापेक्ष सूर्य कितना अधिक चमकदार है ?
(c) $\lambda=500 \mathrm{~nm}$ के लिए एक 20 cm दूरबीन की विभेदन की विवर्तन सीमा ज्ञात करें।
(d) स्पेक्ट्रमी वर्ग 0 और A के दो तारों के तापमान क्रमश:
$40,000 \mathrm{~K}$ और $10,000 \mathrm{~K}$ हैं। उनके कृष्णिका विकिरण
वक्र खींचें।
(e) वर्णमंडल और किरीट का तापमान प्रकाश मंडल की तुलना में बहुत अधिक होता है। तब इन तीनों में प्रकाश मंडल सबसे अधिक चमकदार क्यों होता है ?
(f) 21 cm तरंगदैर्ध्य वाले विद्युत्च्चुंबकीय विकिरण की ऊर्जा परिकलित करें।
(g) दो मुख्य अनुक्रम तारों के द्रव्यमान क्रमश: M_{1} और M_{2} हैं। यदि $M_{1}>M_{2}$ तो सिद्ध करें कि द्रव्यमान M_{1} वाले तारे का मुख्य अनुक्रम पर जीवन काल द्रव्यमान M_{2} वाले तारे से कम होगा।
(h) एक सेफ़र्ट मंदाकिनी के केंद्र से उस उत्सर्जक बादल की दूरी का अनुमान लगाए ताकि उसका वेग $10^{6} \mathrm{~ms}^{-1}$ हो। दिया है कि केंद्रीय संहत पिंड का द्रव्यमान $10^{7} \mathrm{M}_{\odot}$ है।
2. कोई दो भाग करें :
(a) एक तारे का दूरी-मापांक -2.5 है। वह हमसे (PC में) कितनी दूरी पर है ?
(b) खगोल बनाएं और उस पर क्रांति वृत्त, वसंत विषुव और शरद विषुव दिखाएं। क्रांति वृत्तीय δ उत्तरी ध्रुव का अपक्रम प्राप्त करें।
(c) तापीय साम्यावस्था में स्थित तारे के द्रव्यमान का अनुमान लगाएं जिसका औसत आंतरिक तापमान $10^{7} \mathrm{~K}$ है एवं त्रिज्या $7 \times 10^{8} \mathrm{~m}$ दिया है कि बोल्टसमान नियतांक $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{Jk}^{-1}, \mathrm{~m}_{\mathrm{H}} \sim 1.67 \times 10^{-27} \mathrm{~kg}$ और $\mathrm{G}=6.7 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ ।
3. कोई दो भाग करें :
(a) बृहस्पति के उपग्रह आयो की कक्षीय अवधि (परिक्रमण काल) 1.77 दिन है। उसकी कक्षा का अर्ध-दीर्घ अक्ष $4.22 \times 10^{10} \mathrm{~cm}$ है। बृहस्पति का द्रव्यमान परिकलित करें। मान लें कि बृहस्पति का द्रव्यमान आयो की तुलना में बहुत अधिक है।
(b) सौर किरीट का संक्षेप में वर्णन करें। समझाएं कि प्रकाश $3+2$ मंडल की तुलना में उसका तापमान इतना अधिक क्यों होता है ?
(c) उत्सर्जन स्पेक्ट्रम और अवशोष्ण स्पेक्ट्रम का परमाण्वीय $3+2$ उद्गम समझाएं। तारे के स्पेक्ट्रम के विश्लेषण से अनुमानित दो पाचल लिखें और उन्हें समझाएं।
4. कोई दो भाग करें :
(a) अंतरातारकीय गैस के विभिन्र घटकों के नाम लिखें। अंतरातारकीय माध्यम (ISM) में ग्रैफाइट और सिलिकेट का पता कैसे लगाया जाता है ?
(b) मुख्य अनुक्रम तारों में हाइड्रोजन दहन प्रक्रिया समझाएं। तारे के मुख्य अनुक्रम पर जीवन काल का व्यंजक प्राप्त करें।
(c) न्यूट्रॉन तारा क्या होता है ? चित्र की सहायता से, न्यूट्रॉन तोरे से स्पंदों का उत्सर्जन समझाएं।
5. कोई दो भाग करें :
(a) सर्पिल मंदाकिनी की चकती में, मंदाकिनी के केंद्र से $1+4$ दूरी के साथ पृष्ठ दीप्ति का परिवर्तन देने वाले नियम का कथन दें। सिद्ध करें कि चकती से उत्सर्जित कुल प्रकाश $2 \pi r^{2}{ }_{d}, \mathrm{I}_{\mathrm{d}}(0)$ है, जहां r_{d} चकती की स्केल लंबाई है और $\mathrm{I}_{\mathrm{d}}(0), r=0$ पर पृष्ठ दीसि है।
(b) सेफ़र्ट मंदाकिनी में चौड़ी रेखा और संकीर्ण रेखा क्षेत्रों का उद्गम समझाएं।
(c) (i) हबल नियम का कथन दें। इसकी मदद से ब्रह्मांड की आयु का अनुमान कैसे लगाया जाता है?
(ii) अदीप्त द्रव्यमान का अस्तित्व सुझाने की आवश्यकता क्यों पड़ती है ?

