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Note :  Question no. 1 is compulsory. Do any four questions
out of 2 to 7. Calculators are not allowed.

1. Which of the following statements are true ? 10
Give reasons for your answers :

(@) Every convex set has at the most finitely
many extreme points.

(b) If A and B are 3 x 3 matrices with |AB|=
then at least one of the matrices A or B has
rank less than three.

(c) If the primal LPP is infeasible, the dual is
also infeasible.

(d) In an optimal solution of a balanced
transportation problem with 3 sources and
4 destinations, it is possible to have 7 routes
over which a positive quantity is
transported.

(¢)  The pay off matrix of any game can have at
most one saddle point.
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Use the graphical method to solve the
following LPP :

Max 2x; +3x,

subject to x, +x2s30, x1—x220, x223,
0<x,=20 and OSx2s]2.

Find the dual of the following LPP :
Max subject 2x; +x,

subject to x;+5x,=10, x;+ 3x,26,
2x,+3x,=38, xy20 and x; unrestricted.

Solve the following LPP by simplex method :
Max 2x; +3x;+ X3

IA

5
2
0

Write the mathematical model of the
following transportation problem :

subject to 7x; +3x,+2x3

IA

4x,+ 2Xy— X3

\%

X1, X, X3

D, D, Ds; D, Supply
S 3 7 6 4 5

S, 2 4 3 2 3
S; 4 3 8 5 3
Demand 3 3 2 2

Also, find an initial basic feasible solution

using North-West corner method.



4. (a) Find an initial basic feasible solution using 6
matrix minima method and hence solve the
following transportation problem using
u - v method.

From A ! OB c Available
1 6 8 4 14
I 4 9 8 12
11 1 2 6 5
Demand 6 10 15

(b)  Find all the basic solutions of the following 4
equations :
X +x,+2x,3=5
201 —xy+x3=4
Which of the solutions are feasible ?
Justify your answer.

5. (a) Solve the following game graphically : 5

Player B

blavera [0 5 73 3
AR R R

(b) Solve the following cost minimising 5
assignment problem :
I m v
20 28 19 13
14 29 15 27
38 19 18 15
20 27 25 11

0O w»
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6. (a)
(b)
7. (a)
(b)
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Prove algebraically that the set
S= {(Xl s Xz)//lez + x% < 4}

is a convex set.

Use the method of dominance to reduce the
size of the following game, and hence find
its solution :

4 1 2 4
2 3 4 3
2 1 5 2
32 53

Players A and B simultaneously call out
either of the numbers 19 or 20. If their sum
is even, B pays A that number of rupees. if
the sum is odd, A pays B that number of
rupees. What is the pay off matrix for this
gaine ? Find the optimal strategies for both
the players.

A company has two grades of inspectors,
I and 11, who are to be assigned for a quality
control inspection. It is required that at least
2000 pieces be inspected per 8 - hour day.
A grade | inspector can check at the rafe of
40 per hour with an accuracy of 97%. A
grade I inspector checks at the rate of 30
pieces per hour with an accuracy of 95%.
The wage rate of a grade I inspector is Rs. 5

(5}



per hour while that of a grade II inspector
is Rs. 4 per hour. An error made by an
inspector costs Rs. 3 to the company. There
are only nine grade I inspectors and eleven
grade Il inspectors available in the company.
Formulate the problem of minimising the
daily inspection cost as an LPP.
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ﬁﬁ@a%wwﬁ_ﬁw@ e
T gl famg & Swar 2 |

frerfefaa LPP &1 wwia faf | g SIfee

2x; +3x, I srferpariwTor SIS
wafH X +x,=30, x;-x,20, x,23,
0=<x;=<20 3R 0=x,<12.
frfafea LPP &1 5t I SIS

2%, + x, 1 SATHRTHIFIT HIT
Srafd x; +5x,=10, x;+3x,26, 2x; +3x,=8,
x,20 3R Xq STfasifad |

frefafaa LPP & wehe fafy | & =it
2x; +3xp + x5 I AfyararieRTu ST,
SEIET 7x1+3x+2x3 = 5
4x,+2xy—x3 =2
X1 Xp X3 = 0
freifafaa uftae gaen &1 wfvrde e
fafe -

D, D, D; Dy amyfd

S, 3 7 6 4 5
S, 2 4 3 2 3
S, 4 3 8 5 3
T 3 3 2 2
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& ot I Hife)
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x;+Xxy+2xy3=5
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I I o v
20 28 19 13
14 29 15 27
38 19 18 15
20 27 25 11
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Sisfial fafer @ g Fifr o wgem -
S:{(Xl, Xz)/2x12 + x4 S4}
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4 1 2 4
2 3 4 3
2 1 5 2
3 2 5 3
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