BACHELOR'S DEGREE PROGRAMME

01721

Term-End Examination June, 2012

ELECTIVE COURSE: MATHEMATICS MTE-12: LINEAR PROGRAMMING

Time: 2 hours Maximum Marks: 50

Note: Question no. 1 is compulsory. Do any four questions out of 2 to 7. Calculators are not allowed.

- Which of the following statements are true? 10
 Give reasons for your answers:
 - (a) Every convex set has at the most finitely many extreme points.
 - (b) If A and B are 3×3 matrices with |AB| = 0, then at least one of the matrices A or B has rank less than three
 - (c) If the primal LPP is infeasible, the dual is also infeasible.
 - (d) In an optimal solution of a balanced transportation problem with 3 sources and 4 destinations, it is possible to have 7 routes over which a positive quantity is transported.
 - (e) The pay off matrix of any game can have at most one saddle point.

2. (a) Use the graphical method to solve the following LPP:

Max
$$2x_1 + 3x_2$$

subject to $x_1 + x_2 \le 30$, $x_1 - x_2 \ge 0$, $x_2 \ge 3$, $0 \le x_1 \le 20$ and $0 \le x_2 \le 12$.

4

5

- (b) Find the dual of the following LPP:

 Max subject $2x_1 + x_2$ subject to $x_1 + 5x_2 \le 10$, $x_1 + 3x_2 \ge 6$, $2x_1 + 3x_2 = 8$, $x_2 \ge 0$ and x_1 unrestricted.
- 3. (a) Solve the following LPP by simplex method: 5 $Max \ 2x_1 + 3x_2 + x_3$

subject to
$$7x_1 + 3x_2 + 2x_3 \le 5$$

 $4x_1 + 2x_2 - x_3 \le 2$

$$x_1, \, x_2, \, x_3 \, \geq \, 0$$

(b) Write the mathematical model of the following transportation problem:

	D_1	D_2	D_3	D_4	Supply
S_{i}	3	7	6	4	5
S_2	2	4	3	2	3
S_3	4	3	8	5	3
Demand	3	3	2	2	

Also, find an initial basic feasible solution using North-West corner method.

4. (a) Find an initial basic feasible solution using matrix minima method and hence solve the following transportation problem using u – v method.

From -	То			A 11 - 1- 1	
	A	В	С	- Available	
I	6	8	4	14	
II	4	9	8	12	
III	1	2	6	5	
Demand	6	10	15		

(b) Find all the basic solutions of the following equations :

$$x_1 + x_2 + 2x_3 = 5$$
$$2x_1 - x_2 + x_3 = 4$$

Which of the solutions are feasible? Justify your answer.

5. (a) Solve the following game graphically: 5

Player B

Player A
$$\begin{bmatrix} 0 & 5 & -3 & 3 \\ 3 & 1 & 1 & -2 \end{bmatrix}$$

(b) Solve the following cost minimising 5 assignment problem:

	I	II	III	IV
A	20	28	19	13
В	14	29	15	27
С	38	19	18	15
D	20	27	25	11

6

6. (a) Prove algebraically that the set

$$S = \left\{ \left(x_1, x_2 \right) / 2x_1^2 + x_2^2 \le 4 \right\}$$

5

5

5

is a convex set.

(b) Use the method of dominance to reduce the size of the following game, and hence find its solution:

$$\begin{bmatrix} 4 & 1 & 2 & 4 \\ 2 & 3 & 4 & 3 \\ 2 & 1 & 5 & 2 \\ 3 & 2 & 5 & 3 \end{bmatrix}$$

- 7. (a) Players A and B simultaneously call out either of the numbers 19 or 20. If their sum is even, B pays A that number of rupees. If the sum is odd, A pays B that number of rupees. What is the pay off matrix for this game? Find the optimal strategies for both the players.
 - (b) A company has two grades of inspectors, I and II, who are to be assigned for a quality control inspection. It is required that at least 2000 pieces be inspected per 8 hour day. A grade I inspector can check at the rate of 40 per hour with an accuracy of 97%. A grade II inspector checks at the rate of 30 pieces per hour with an accuracy of 95%. The wage rate of a grade I inspector is Rs. 5

MTE-12 4

per hour while that of a grade II inspector is Rs. 4 per hour. An error made by an inspector costs Rs. 3 to the company. There are only nine grade I inspectors and eleven grade II inspectors available in the company. Formulate the problem of minimising the daily inspection cost as an LPP.

स्नातक उपाधि कार्यक्रम सत्रांत परीक्षा

जून, 2012

ऐच्छिक पाठ्यक्रम : गणित

एम.टी.ई.-12 : रैखिक प्रोग्रामन

समय : 2 घण्टे

अधिकतम अंक : 50

नोट: कुल पाँच प्रश्न कीजिए। प्रश्न सं. 1 अनिवार्य है। प्रश्न सं. 2 से 7 में से किन्हीं चार प्रश्नों के उत्तर दीजिए। कैलकुलेटरों का प्रयोग करने की अनुमित नहीं है।

- निम्नलिखित में से कौन से कथन सत्य हैं ? अपने उत्तरों के 10 कारण दीजिए।
 - (a) प्रत्येक अवमुख समुच्चय के अधिक से अधिक परिमिततः कई चरम बिन्दु होते हैं।
 - (b) यदि A और B, 3×3 आव्यूह हैं जिनके लिए |AB| = 0 है, तब A या B आव्यूह में से कम से कम किसी एक की जाति तीन से कम होगी।
 - (c) यदि आद्य LPP असंगत है तो इसकी द्वैती भी असंगत होगी।
 - (d) 3 स्रोतों और 4 गंतव्यों वाली संतुलित परिवहन समस्या के इष्टतम हल में, 7 मार्गों पर धन मात्रा का परिवहन संभव है।

- (e) किसी खेल के आव्यूह भुगतान में अधिक से अधिक एक पल्याण बिन्दु हो सकता है।
- 2. (a) निम्नलिखित LPP को ग्राफ़ीय विधि से हल कीजिए : 6 $2x_1 + 3x_2$ का अधिकतमीकरण कीजिए। जबिक $x_1 + x_2 \le 30$, $x_1 x_2 \ge 0$, $x_2 \ge 3$, $0 \le x_1 \le 20$ और $0 \le x_2 \le 12$.
 - (b) निम्नलिखित LPP का द्वैती ज्ञात कीजिए : $2x_1 + x_2 \text{ का अधिकतमीकरण कीजिए :}$ जबिक $x_1 + 5x_2 \le 10$, $x_1 + 3x_2 \ge 6$, $2x_1 + 3x_2 = 8$, $x_2 \ge 0 \text{ और } x_1 \text{ अप्रतिबंधित } \text{ } \text{ }$
- 3. (a) निम्नलिखित LPP को एकधा विधि से हल कीजिए : 5 $2x_1 + 3x_2 + x_3$ का अधिकतमीकरण कीजिए, जबिक $7x_1 + 3x_2 + 2x_3 \le 5$ $4x_1 + 2x_2 x_3 \le 2$ $x_1, x_2, x_3 \ge 0$
 - (b) निम्नलिखित परिवहन समस्या का गणितीय निदर्श 5 लिखिए:

	D_1	D_2	D_3	D_4	आपूर्त्ति
S_1	3	7	6	4	5
S_2	2	4	3	2	- 3
S_3	4	3	8	5	3
मांग	3	3	2	2	•

उत्तर-पश्चिम कोना विधि से प्रारंभिक आधारी सुसंगत हल भी ज्ञात कीजिए। 4. (a) आव्यूह न्यूनतम विधि से प्रारंभिक आधारी सुसंगत हल 6 ज्ञात कीजिए और इस तरह u-v विधि से निम्नलिखित परिवहन समस्या को हल कीजिए :

			•	
से	तक			
4	A	В	С	- उपलब्ध
I	6	8	4	14
II	4	9	8	12
III	1	2	6	5
मांग	6	10	15	

(b) निम्नलिखित समीकरणों के सभी आधारी हल ज्ञात 4 कीजिए:

$$x_1 + x_2 + 2x_3 = 5$$
$$2x_1 - x_2 + x_3 = 4$$

इनमें से कौन से हल संगत हैं। अपने उत्तर की पुष्टि कीजिए।

5. (a) निम्नलिखित खेल को ग्राफीय विधि से हल कीजिए: 5

खिलाड़ी B
$$\begin{bmatrix} 0 & 5 & -3 & 3 \\ 3 & 1 & 1 & -2 \end{bmatrix}$$

(b) निम्नलिखित खर्च-न्यूनतमकारी नियतन समस्या हल 5 कीजिए:

	I	II	III	IV
Α	20 14	28	19	13
В	14	29	15	27
A B C D	38	19	18	15
D	20	27	25	11

6. (a) बीजीय विधि से सिद्ध कीजिए कि समुच्चय:

$$S = \left\{ (x_1, x_2) / 2x_1^2 + x_2^2 \le 4 \right\}$$

5

5

5

5

एक अवमुख समुच्चय है।

(b) निम्नलिखित खेल के आकार को समानीत करने के लिए प्रमुखता विधि का प्रयोग कीजिए और इस तरह इसका हल ज्ञात कीजिए:

$$\begin{bmatrix} 4 & 1 & 2 & 4 \\ 2 & 3 & 4 & 3 \\ 2 & 1 & 5 & 2 \\ 3 & 2 & 5 & 3 \end{bmatrix}$$

- 7. (a) खिलाड़ी A और B 19 या 20 में कोई एक संख्या एक साथ बोलते हैं। यदि उनका योग सम हो, तो B, A को उस संख्या के बराबर रूपये देता है। यदि उनका योग विषम हो तो A, B को उस संख्या के बराबर रूपये देता है। इस खेल का भुगतान आव्यूह क्या है? दोनों खिलाड़ियों के लिए इष्टतम युक्तियाँ ज्ञात कीजिए।
 - (b) एक कंपनी में दो ग्रेड के इनस्पेक्टर हैं इनस्पेक्टर I और इनस्पेक्टर II जिन्हें गुणता नियंत्रण की जाँच का काम सौंपा जाना है। यह अपेक्षा की जाती है कि वे प्रतिदिन 8 घंटे में कम से कम 2000 वस्तुओं की जाच करें। एक ग्रेड I इनस्पेक्टर एक घंटे में 40 वस्तुओं की जाँच कर सकता है और उसकी यथार्थता 97% हैं। ग्रेड

II इनस्पेक्टर 30 वस्तु प्रति घंटा की दर से वस्तुओं की जाँच कर सकता है और उसकी यथार्थता 95% है। ग्रेड I वाले इनस्पेक्टर की मज़दूरी दर 5 रु. प्रति घंटा है और ग्रेड II वाले इंस्पेक्टर की मज़दूरी दर 4 रु. प्रति घंटा है। इंस्पेक्टर से एक त्रुटि हो जाने पर कंपनी को 3 रु. की हानि होती है। कम्पनी में ग्रेड I के केवल नौ और ग्रेड II के केवल ग्यारह इंस्पेक्टर हैं। दैनिक-जाँच के खर्च का न्यूनतम करने की समस्या को LPP के रूप में सूत्रित कीजिए।