BACHELOR'S DEGREE PROGRAMME

Term-End Examination

June, 2012

ELECTIVE COURSE: MATHEMATICS MTE-11: PROBABILITY AND STATISTICS

Time: 2 hours

0273

Maximum Marks: 50

Note: Question No. 7 is compulsory. Answer any four questions from question no. 1 to 6. Calculators are not allowed.

- (a) Explain the different methods of data
 collection with suitable examples.
 - (b) For the probability density function $f(x) = Ke^{-ax}(1 e^{-ax}); x \ge 0$ find K, $F_X(x)$ and P(X > 1).
 - (c) Defects in a particular kind of metal sheet occur at an average rate of one per 100 sq. mtr. Find the probability of two or more defects in a sheet of size 5×8 sq. mtr.

2. (a) Consider the following probability distribution.

5

5

3

$X \downarrow Y \rightarrow$	0	1	2
0	0.1	0.2	0.1
1	0.2	0.3	0.1

Calculate E(X), V(Y) and correlation coefficient of X and Y.

(b) Let (X, Y) has the joint density function $f(x, y) = e^{-y}$; $0 < x < y < \infty$.

Find the marginal distribution of X. Also calculate:

- (i) f(Y | X = x)
- (ii) E(Y | X = x)
- (iii) Check the independence of X and Y.
- 3. (a) Given the frequency function

 $f(x, \theta) = \frac{1}{\theta}; 0 \le x \le \theta.$

It is desired to test the hypothesis $H_0: \theta = 1$ against $H_1: \theta = 2$ by means of a single observed value of x. What would be level of significance if the interval $1 \le x \le 1.5$ is the critical region? Also find the power of the test.

MTE-11

(b) A lot contains 50 defective and 50 nondefective bulbs. Two bulbs are drawn at random one at time, with replacement. The events A, B and C are defined as:

A: The first bulb is defective

B: The second bulb is non defective.

C: The two bulbs are both defective or both non defective.

Determine whether A, B and C are independent.

- (c) The mean of two samples of sizes 50 and 100 respectively are 54.1 and 50.3 and the standard deviations are 8 and 7. Obtain the mean and standard deviation by combining the two samples.
- 4. (a) Let X_1 , X_2 ,......, X_n be a random sample from a distribution having finite mean μ and variance σ^2 . Show that

$$T(X_1, X_2, ..., X_n) = \frac{2}{n(n+1)} \sum_{i=1}^{n} iX_i$$
 is

unbiased for μ.

(b) An income tax officer randomly selects 5 returns from among 12 returns of which 6 contain illegitimate deductions. Find the probability that the income tax official will catch 3 income tax-returns with illegitimate deductions.

3

3

(c) If a random variable U has t-distribution with n degrees of freedom, show that

4

4

3

3

$$Var(U) = \frac{n}{n-2} ; n > 2$$

5. (a) A bird watcher sitting in a park has spotted a number of birds belonging to 6 categories.

The exact distribution is given below in the table.

Category:	1	2	3	4	5	6
Frequency:	6	7	13	17	6	5

Test at 5% level of significance whether or not the data is compatible with the assumption that this particular park is visited by birds belonging to six categories in the proportion. 1:1:2:3:1:1.

[You may like to use the following values:

$$x_{5,0.05}^2 = 11.07, x_{4,0.05}^2 = 9.488, x_{6,0.05}^2 = 12.59$$
].

(b) Find the most likely price in Mumbai corresponding to Rs. 70 at Kolkata from the following:

	Kolkata	Mumbai
Average Price	Rs. 65	Rs. 67
Standard deviation	Rs. 2.5	Rs. 3.5

Correlation coefficient between the price of commodities in two cities is 0.8.

(c) Derive the relation between central moments and moments about any point A.

- 6. (a) Let X_1, X_2, \dots, X_n be a random sample from $N(\mu, \sigma^2)$. Obtain a confidence interval for μ when σ^2 is known. Use α -level of significance.
 - (b) Eighteen unbiased dice are roled. What is the probability that each of the six faces occur thrice?
 - (c) Let X have the probability density function $f(x) = xe^{-x}$; x > 0. Find the moment generating function of X if it exists. Also find mean and variance of X.
- 7. Which of the following statements are *true* or false? Give reasons for your answer. 5x2=10
 - (a) A consistent estimator for θ is always unbiased.
 - (b) There is no difference between correlation coefficient and regression coefficients.
 - (c) For two random variables X and Y. E(X + Y) = E(X) + E(Y) + Cov(X, Y),and E(XY) = E(X).E(Y)
 - (d) The proportion of tails in 1000 tosses of a coin is a discrete variable.
 - (e) If X is a random variable with mean μ and finite variance σ^2 , then for every $\epsilon > 0$.

$$P[|X - \mu| \le \epsilon] \le \frac{\sigma^2}{\epsilon^2}.$$

स्नातक उपाधि कार्यक्रम सत्रांत परीक्षा जून, 2012

ऐच्छिक पाठ्यक्रम : गणित

एम.टी.ई.-11 : प्रायिकता और सांख्यिकी

समय : २ घण्टे

अधिकतम अंक : 50

4

नोट: प्रश्न संख्या 7 करना जरुरी है। प्र.स. 1 से 6 तक में से कोई चार प्रश्न कीजिए। कैलकुलेटर का प्रयोग करने की अनुमित नहीं हैं।

- (a) आंकड़ों को एकत्रित करने की भिन्न-भिन्न विधियों को 3
 उपयुक्त उदाहरणों के साथ व्याख्या कीजिए।
 - (b) प्रायिकता घनत्व फलन : $f(x) = \mathrm{Ke}^{-ax}(1 \mathrm{e}^{-ax}) \; ; \; x \geqslant 0$ के लिए K, $F_X(x)$ और P(X > 1) ज्ञात कीजिए।
 - (c) एक विशेष प्रकार की धातु की चादर में औसतन 3
 100 वर्ग मीटर में 1 वर्ग मीटर भाग खराब होता है। एक
 5×8 वर्गमीटर की चादर में दो या दो से अधिक खराब
 भाग होने की प्रायिकता ज्ञात कीजिए।

2. (a) निम्नलिखित प्रायिकता बंटन को लीजिए:

$X \downarrow Y \rightarrow$	0	1	2
0	0.1	0.2	0.1
1	0.2	0.3	0.1

E(X), V(Y) और X और Y का सहसम्बन्ध गुणाकं ज्ञात कीजए।

(b) मान लीजिए कि (X, Y) का संयुक्त घनत्व फलन 5 निम्नलिखित है।

$$f(x, y) = e^{-y}$$
; $0 < x < y < \infty$.

X का उपान्त बंटन ज्ञात कीजिए।

- (i) f(Y | X = x) और
- (ii) E(Y | X = x) भी ज्ञात कीजिए।
- (iii) X और Y की स्वतंत्रता की जाचँ कीजिए।

3. (a) एक बारम्बारता फलन

 $f(x, \theta) = \frac{1}{\theta}; 0 \le x \le \theta.$

दिया गया है परिकल्पना $H_0:\theta=1$ का परीक्षण परिकल्पना $H_1:\theta=2$ के विरुद्ध x के एक प्रेक्षित मान के लिए करने की जरूरत है। यदि अन्तराल $1 \le x \le 1.5$ एक क्रांतिंक प्रदेश है तो सार्थकता स्तर क्या होगा? परीक्षण की क्षमता भी ज्ञात कीजिए।

3

5

(b) एक लॉट में 50 खराब और 50 ठीक बल्ब हैं। एक समय में दो बल्ब विस्थापन के साथ यादृच्छया चुने जाते हैं। घटनाएं A, B और C इस प्रकार परिभाषित हैं:

A : पहला बल्ब खराब है।

B: दूसरा बल्ब ठीक है।

C: दोनों बल्ब खराब है या दोनों ठीक हैं।

परिकलित कीजिए कि A, B और C स्वतंत्र है या नहीं।

- (c) दो 50 और 100 आकार वाले प्रतिदर्शों का माध्य क्रमश: 4 54.1 और 50.3 है और मानक विचलन क्रमश: 8 और 7 है। दोनों प्रतिदर्शों का संयुक्त माध्य और मानक विचलन ज्ञात कीजिए।
- 4. (a) मान लीजिए कि $X_1, X_2,...$, X_n एक परीमित माध्य μ और प्रसरण σ^2 वाला यादृच्छिक प्रतिदर्श है। दर्शाइये $\text{ for } T(X_1, X_2,..., X_n) = \frac{2}{n(n+1)} \sum_{i=1}^n iX_i$ μ के लिए अनिभनत है।
 - (b) एक आयकर अधिकारी 12 विवरणी (returns) जिनमें 3 से 6 में गैर कानूनी कटौतियाँ हैं में से 5 विवरणी यादृच्छया चुनता है। वह प्रायिकता कि आयकर अधिकारी 3 गैरकानूनी कटौतियों वाली विवरणी पकड़ता है, ज्ञात कीजिए।
 - (c) यदि एक n स्वातन्त्रया कोटि वाला यादृच्छिक चर U का $\frac{4}{t}$ t-बंटन है, तो दर्शाइये कि $Var(U) = \frac{n}{n-2}$; n > 2 होगा।

3

5. (a) एक बाग में बैठा एक पक्षी दर्शक 6 श्रेणियों में पिक्षयों की संख्या केन्द्रित करता है। सही बंटन निम्न सारणी में दिया गया है।

श्रेणी	1	2	3	4	5	6
बारम्बारता	6	7	13	17	6	5

4

3

3

5% सार्थकता स्तर पर परीक्षण कीजिए कि ये आँकड़े इस मान्यता कि इस बाग में पिक्षयों का इन 6 श्रेणियों में अनुपात 1:1:2:3:1:1 है, के अनुरुप है या नहीं। [आप निम्न मानों का प्रयोग कर सकते है।

$$x_{5,0.05}^2 = 11.07$$
, $x_{4,0.05}^2 = 9.488$, $x_{6,0.05}^2 = 12.59$]

(b) निम्नलिखित आकड़ों से कोलकाता में रु. 70 के अनुकूल मुम्बई में अधिकतम संभावित मूल्य ज्ञात कीजिए।

	कोलकाता	मुम्बई
माध्य मूल्य	65	67
मानक विचलन	2.5	3.5

दोनों शहरों में सामग्री के मूल्यों के बिच सहसम्बन्ध गुणांक 0.8 है।

- (c) किसी बिन्दु A के सापेक्ष आघूर्णों और केन्द्रीय आघूर्णों में सम्बन्ध को उत्पादित कीजिए।
- 6. (a) मान लीजिए कि $X_1, X_2,, X_n, N(\mu, \sigma^2)$ से लिया $\mathbf{4}$ गया एक यादृच्छिक प्रतिदर्श है। μ के लिए एक विश्वस्यता अन्तराल ज्ञात कीजिए जबिक σ^2 ज्ञात है। α -सार्थकता स्तर का प्रयोग कीजिए।

- (b) 18 अनिभनत पांसे फेंके जाते हैं। पांसें के प्रत्येक पहलू 3 के तीन बार आने की प्रायिकता ज्ञात कीजिए।
- (c) मानलीजिए कि X का प्रायिकता घनत्व फलन निम्न है। $f(x) = xe^{-x}$; x > 0. X का आधूर्णजनक फलन यदि अस्तित्व है तो ज्ञात 3 कीजिए। X का माध्य और मानक विचलन भी ज्ञात कीजिए।
- निम्नलिखित कथनों में से कौन से कथन सत्य या असत्य है।
 अपने उत्तर के कारण दीजिए।
 - (a) θ का एक संगत आकलक हमेशा अनिभनत होता है।
 - (b) सहसंबधं गुणाकं और समाश्रयण गुणांक में कोई अन्तर नहीं होता है।
 - (c) दो यादृच्छिक चर X और Y के लिए $E(X+Y)=E(X)+E(Y)+Cov\ (X,\ Y),$ और E(XY)=E(X). E(Y) होता है।
 - (d) एक सिक्के को 1000 बार उछालने में प्राप्त पद का समानुपात एक असतत चर है।
 - (e) यदि X एक यादृच्छिक चर है जिसका माध्य μ और पिरिमित प्रसरण σ^2 है, तो प्रत्येक $\epsilon>0$ के लिए $P[|X-\mu| \leq \epsilon] \leq \frac{\sigma^2}{\epsilon^2} \ \text{होगा} \ I$