B.Tech. MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination

June, 2012

BIME-034 : HEAT AND MASS TRANSFER

Time : 3 hours
Maximum Marks : 70
Note: Attempt any five questions. Assume suitable missing data if any.

1. (a) Derive general three dimensional heat 7 conduction equation in cylindrical coordinate.
(b) Two long rods of the same diameter, one 7 made of brass ($k=85 \mathrm{w} / \mathrm{mK}$) and the other made of copper ($k=375 \mathrm{w} / \mathrm{mK}$) have one of their ends inserted into the furnace. Both rods are exposed to the same temperature. At a distance of 105 mm away from the furnace end the temperature of the brass rod is $120^{\circ} \mathrm{C}$. At what distance from the furnace end, the same temperature would be attained by the copper rod ?
2. (a) Derive the equation for heat discription by a fin with an insulted tip
$\theta=\sqrt{\mathrm{hpKA}}\left(\mathrm{T}_{\mathrm{o}}-\mathrm{T}_{\infty}\right) \tanh (\mathrm{mL})$
by integrating the convective losses along its surface.
(b) Explain and derive the expression for fin efficiency and fin effectiveness.
3. (a) What is significance of critical thickness of 7 insulation? Derive an expression for the critical radius of a sphere.
(b) : Derive an expression for the overall heat 7 transfer coefficient of three layer composite cylinder. Assume convection at inner and outer surface.
4. (a) Derive an expression for NTU - effectiveness 7 for a counterflow heat exchanger.
(b) In a solar assisted air-conditioning system, 7 $0.5 \mathrm{~kg} / \mathrm{s}$ of ambient air at 270 K is to be preheated by the same amount of air leaving the system at 295 K . If a counter flow heat exchanger has an area of $30 \mathrm{~m}^{2}$ and the overall heat transfer coefficient is estimated to be $25 \mathrm{w} / \mathrm{m}^{2} \mathrm{~K}$; determine the outlet temperature of the preheated air. Take Cp for air as $1000 \mathrm{~J} / \mathrm{kgK}$.
5. (a) Derive a general expression for shape factor 7 (F_{12}) between the two surfaces (1 and 2) exchanging radiation heat transfer.
> (b) Two very large parallel planes with emissivities 0.3 and 0.8 exchange radiative energy. Determine the percentage reduction in radiative energy transfer when a polished aluminium radiation shield $(\epsilon=0.04)$ is placed between them.7
6. (a) What is nucleate boiling ? 7
(b) Explain Fick's law of diffusion. What is mass 7 diffusivity?
7. Write short note on the following :
$3.5 \times 4=14$
(a) Black body
(b) Wien's displacement law
(c) Nusselt Number
(d) Biot Number.
