# DIPLOMA IN MECHANICAL ENGINEERING (DMEVI) 

Term-End Examination

June, 2012

## BIME-026: HEAT TRANSFER

Time: 2 hours
Maximum Marks : 70
Note: Attempt any five question. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) What is meant by thermal resistance ? 7+7 Explain the electrical analogy for solving heat transfer problems.
(b) Differentiate between thermal conductivity and thermal diffusivity.

2: (a) Discuss critical thickness of insulation and 7+7 its importance in engineering practice.
(b) Distinguish between natural and forced convection heat transfer.
3. (a) Define Reynolds number, Nusselt number, 7+7 and Stanton number. Explain their importance in convective heat transfer.
(b) Explain the concept of black body and grey body in radiation terminology.
4. (a) Define absorptivity, reflectivity and 7+7 transmissivity.
(b) A furnace wall is made up of three layers, one of brick, one of insulating brick and one of red brick. The inner and outer surfaces are at $870^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ respectively. The thermal consuctivities of the layers are $1.17 \mathrm{~W} / \mathrm{mk}, 0.139 \mathrm{~W} / \mathrm{mk}$, and $0.875 \mathrm{~W} / \mathrm{mk}$ respectively and thickness are $22 \mathrm{~cm}, 7.5 \mathrm{~cm}$, and 11 cm . Assume close bonding of the layers at their interfaces, find out the rate of heat-loss per square meter per hour and interface temperature.
5. (a) Define fin effectiveness. When is the use of $7+7$ fins not justified?
(b) Define Laminar and turbulent flows.

Discuss Laminar sublayer, and turbulent layer in a boundary layer.
6. (a) Describe Newton's law of cooling. Also 7+7 explain convective heat transfer coefficient.
(b) Distinguish the pool boiling from forced convection boiling.
7. (a) State Planck's distribution law and list 7+7 down its features.
(b) A black body has a total emissive power of $1000 \mathrm{~W} / \mathrm{m}^{2}$, Calculate.
(i) its surface temperature
(ii) The wavelength at which the body has maximum spectral emissive power.

Given $\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{k}^{4}$
The wavelength corresponding to maximum emissive power $\lambda_{\text {max }}$ $\mathrm{T}=2897.6 \mu \mathrm{~m}$ K.

