No. of Printed Pages : 3

BIME-026

DIPLOMA IN MECHANICAL ENGINEERING - (DMEVI)

Term-End Examination

June, 2012

BIME-026: HEAT TRANSFER

Time : 2 hours

Maximum Marks : 70

Note: Attempt **any five** question. All questions carry **equal** marks. Use of scientific calculator is permitted.

1.	(a)	What is meant by thermal resistance ? Explain the electrical analogy for solving heat transfer problems.	7+7
	(b)	Differentiate between thermal conductivity and thermal diffusivity.	
2.	(a)	Discuss critical thickness of insulation and its importance in engineering practice.	7+7
	(b)	Distinguish between natural and forced convection heat transfer.	
3.	(a)	Define Reynolds number, Nusselt number, and Stanton number. Explain their importance in convective heat transfer.	7+7
	(b)	Explain the concept of black body and grey body in radiation terminology.	

BIME-026

- (a) Define absorptivity, reflectivity and 7+7 transmissivity.
 - (b) A furnace wall is made up of three layers, one of brick, one of insulating brick and one of red brick. The inner and outer surfaces are at 870° C and 40° C respectively. The thermal consuctivities of the layers are 1.17 W/mk, 0.139 W/mk, and 0.875 W/mk respectively and thickness are 22cm, 7.5cm, and 11cm. Assume close bonding of the layers at their interfaces, find out the rate of heat-loss per square meter per hour and interface temperature.
- 5. (a) Define fin effectiveness. When is the use of 7+7 fins not justified ?
 - (b) Define Laminar and turbulent flows. Discuss Laminar sublayer, and turbulent layer in a boundary layer.
- 6. (a) Describe Newton's law of cooling. Also 7+7 explain convective heat transfer coefficient.
 - (b) Distinguish the pool boiling from forced convection boiling.

BIME-026

2

- (a) State Planck's distribution law and list 7+7 down its features.
 - (b) A black body has a total emissive power of 1000 W/m², Calculate.
 - (i) its surface temperature
 - (ii) The wavelength at which the body has maximum spectral emissive power.

Given $\sigma = 5.67 \times 10^{-8} \text{ W/m}^2 \text{ k}^4$

The wavelength corresponding to maximum emissive power λ_{max} T=2897.6 µm K.

BIME-026