BIME-025

DIPLOMA VIEP MECHANICAL ENGINEERING

802	Term-End Examination
53	June, 2012
0	BIME-025 : DESIGN OF MACHINE ELEMENTS

Time : 2 Hours

Maximum Marks : 70

Note : Attempt **any four** questions between **02** to **08**. And **first** Question is **compulsory**. Design Data book is allowed.

 (a) The notch sensitivity q is expressed interms of fatigue stress concentration factor K_f and theoretical stress concentration factor K_t, as : 2x7=14

(i)
$$\frac{K_{f}+1}{K_{t}+1}$$
 (ii) $\frac{K_{f}-1}{K_{t}-1}$

(iii)
$$\frac{K_t+1}{K_f+1}$$
 (iv) $\frac{K_t-1}{K_f-1}$

(b) A basic hole is one whose :

- (i) Lower deviation is zero
- (ii) Upper deviation is zero
- (iii) Lower and upper deviation is zero
- (iv) None of these

BIME-025

- (c) Which of the loading is considered for the design of axles ?
 - (i) Bending moment only
 - (ii) Twisting moment only
 - (iii) Combined bending moment and torsion
 - (iv) Combined action of bending moment, Twisting moment and axial thrust
- (d) The usual proportion for the width of key is :
 - (i) d/8 (ii) d/6
 - (iii) d/4 (iv) d/2
- (e) Where d = diameter of shaft Oldham coupling is used to connect two shafts :
 - (i) Which is perfectly aligned
 - (ii) Which are not in exact alignment
 - (iii) Which have lateral misalignment
 - (iv) Whose axes intersect at a small angle
- (f) The close coiled helical springs with stiffness K₁ and K₂ respectively are connected in series. The stiffness of an equivalent spring is given by :
 - (i) $\frac{K_1 \cdot K_2}{K_1 + K_2}$ (ii) $\frac{K_1 K_2}{K_1 + K_2}$
 - (iii) $\frac{K_1 + K_2}{K_1 \cdot K_2}$ (iv) $\frac{K_1 K_2}{K_1 \cdot K_2}$

BIME-025

(g) The ratio of equivalent length of a column, having one end fixed and the other hinged, to its length is :

- 2. Discuss the Design procedure with neat and clean 14 diagram.
- A non-rotating shaft supporting a load of 2.5 kN 14 is shown in fig.1. The material of the shaft is brittle, with an ultimate tensile strength of 300 N/mm² and a factor of safety is 3. Determine the dimensions of the shaft.

- 4. Derive the expression when shaft subjected to 14 bending moment only.
- 5. What is key ? Explain different types of key. 14

BIME-025

P.T.O.

- 6. A closely coiled helical spring is made out of 14 10 mm diameter steel rod. The coil consists of 10 complete turn with a mean diameter of 120 mm. The spring carries an axial pull of 200N. Find the maximum shear stress induced in the section of the rod. If $C = 80 \text{GN}/\text{m}^2$. Find the deflection in the spring, the stiffness and strain energy stored in the spring.
- 7. Compare the crippling loads given by Rankine's 14 and Euler's formulae for tubular strut 2.25 m long having outer and inner diameters of 37.5 mm and 32.5 mm loaded through pin joint at both ends.

Take : Yield stress as $315MN/m^2$; $a = \frac{1}{7500}$ and $E = 200GN/m^2$

If elastic limit for the material is taken as 200 MN/m^2 ; then for what length of street does the Eular formula cease to apply ?

- 8. Write short note. Attempt *any four* of the following :
 - (a) S N Curve
 - (b) Endurance Limit
 - (c) Notch sensitivity
 - (d) Goodman diagram
 - (e) Fatigue failure
 - (f) Design for finite and Infinite life

3.5x4=14