# DIPLOMA IN MECHANICAL ENGINEERING • (DMEVI) 

Term-End Examination<br>02055<br>June, 2012

## BIME-021 : MECHANICS OF MATERIALS

## Time : $\mathbf{2}$ hours <br> Maximum Marks: 70

Note: Attempt five questions in all. Question No-1 is compulsory. All questions carry equal marks. Scientific calculator is allowed.

1. (a) The ratio of Bulk modulus to Young's modulus for a poisson's ratio of 0.25 will be :
(i) $1 / 3$
(ii) $2 / 3$
(iii) 1
(iv) $3 / 2$
(b) When a body is subjected to direct tensile stress ( $\sigma$ ) in one plane, then normal stress on an oblique section of the body inclined at an angle $\theta$ to the normal of the section is :
(i) $\sigma \cos \theta$
(ii) $\sigma \cos ^{2} \theta$
(iii) $\sigma \sin \theta$
(iv) $\sigma \sin ^{2} \theta$
(c) A beam is fixed at one end and free at the other end is called :
(i) Simply supported beam
(ii) Fixed beam
(iii) Over hanging beam
(iv) Cantilever beam
(d) The neutral axis of the cross section of a beam is that axis at which the bending stress is :
(i) Zero
(ii) Minimum
(iii) Maximum
(iv) Infinity
(e) When a thin cylindrical shell is subjected to an internal pressure, the volumetric strain is :
(i) $2 \epsilon_{1}-\epsilon_{2}$
(ii) $2 \epsilon_{1}+\epsilon_{2}$
(iii) $2 \epsilon_{2}-\epsilon_{1}$
(iv) $2 \epsilon_{2}+\epsilon_{1}$

Where $\epsilon_{1}=$ Hoop strain $\epsilon_{2} \rightarrow$ longitudinal strain
(f) The maximum deflection of a cantilever beam of length $l$ with a uniformly distributed load of $w$ per unit length is -
(i) $\frac{\mathrm{Wl}^{3}}{3 \mathrm{EI}}$
(ii) $\frac{W l^{3}}{8 \mathrm{EI}}$
(iii) $\frac{\mathrm{Wl}^{3}}{16 \mathrm{EI}}$
(iv) $\frac{\mathrm{Wl}^{3}}{48 \mathrm{EI}}$

Where $W=$ wl
(g) The total strain energy stored in a body is called proof resilience (True/False)
2. (a) A steel wire 2 m long and 3 mm in diameter is extended by 0.75 mm when a weight W is suspended from the wire. If the same weight is suspended from a brass wire, 2.5 m long and 2 mm in diameter, it is elongated by 4.64 mm .
Determine the modulus of elasticity of Brass if that of steel be $2.0 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$

## (b) Draw stress-strain Diagram for Ductile materials and explain its salient features.

3. (a) Show that in a strained material subjected to two - dimensional stress, the sum of the normal components of stresses on any two mutually perpendicular plane is constant
(b) A short metallic column of $500 \mathrm{~mm}^{2}$ crosssectional area carries an axial compressive load of 100 KN . For a plane inclined at $60^{\circ}$ with the direction of load, calculate :
(i) Normal stress
(ii) Tangential stress
(iii) Resultant stress
(iv) Maximum shear stress
4. (a) Explain section modulus and neutral axis. 4
(b) Determine the dimensions of joist of a timber 10 for span 8 m to carry a brick wall 200 mm thick and 5 m high. If the density of brick work is $1850 \mathrm{~kg} / \mathrm{m}^{3}$ and the maximum permissible stress is limited to $7.5 \mathrm{MN} / \mathrm{m}^{2}$. Given that the depth of joist is twice the width.
5. (a) A beam AB of length $l$ simply supported at the ends carries a point load $W$ at a distance from the left end.

Show that - Deflection under the load is $-\frac{W a^{2} b^{2}}{3 \mathrm{EI} l}$.

Where $\mathrm{E}=$ Young modulus, $\mathrm{I}=$ Moment of Inertia.
(b) Explain the Parallel Axis theorem.
6. (a) Derive the Torsion equation for circular shaft. What are the assumptions made in the derivation?
(b) A cylindrical shell 3 m long which is closed at the ends has an internal diameter of 1 m and a wall thickness of 15 mm . Calculate the circumferential and longitudinal stresses induced and also change in the dimensions of the shell if it is subjected to an internal pressure of $1.5 \mathrm{MN} / \mathrm{m}^{2}$

Take $E=200 \mathrm{GN} / \mathrm{m}^{2}$ and $\frac{1}{\mathrm{~m}}=0.3$
7. (a) What is strain energy ? Derive the 7 expression for strain energy under the Impact load.
(b) Derive the expression of Euler's Formla 7 when both ends of the column are hinge or pinned.
8. Write the short note at any four :
(a) Maximum Principal Stress theory
(b) Shear Stress Distribution
(c) Moment of resistance
(d) Moment Aera Method
(e) Lame's equation for stresses
(f) Euler's Formula

