DECVI / DELVI / DCSVI /ACECVI / ACELVI / ACCSVI

10
0
0

Term-End Examination

June, 2012

OIEE-001 : BASICS OF ELECTRICAL ENGINEERING

Time : 2 hours
Maximum Marks : 70
Note : (i) All the questions are to be answered in English Language only.
(ii) Attempt any five questions. Question No 1 is compulsory.

Attempt the following objective type questions:

1. (a) A certain piece of Aluminium is to be shaped into a conductor of minimum resistance, its length and cross-sectional area shall be respectively.
(i) L and A
(ii) 2 L and $\mathrm{A} / 2$
(iii) $\mathrm{L} / 2$ and 2 A
(iv) $\mathrm{L} / 2$ and $\mathrm{A} / 2$
(b) A Norton's equivalent is :
(i) Parallel circuit
(ii) Series circuit
(iii) Series-parallel circuit
(iv) None of the above
(c) Magnetic field strength H and B are independent of each other (True/False)
(d) The direction of Electro magnetically induced emf is determined by :
(i) Flemings right hand rule
(ii) Lenz's law
(iii) Right hand thumb rule
(iv) Both (i) and (ii)
(e) What will happen if frequency of power supply in pure capacitive circuit is doubled ?
(i) Current will also be doubled
(ii) Current will reduce to half
(iii) Current will remain same
(iv) Current will increase to four fold
(f) When a sinusoidal voltage is applied across $\mathrm{R}-\mathrm{L}$ series circuit having $\mathrm{R}=\mathrm{X}_{\mathrm{L}}$ the phase angle will be :
(i) 90°
(ii) 0°
(iii) 45°
(iv) 30°
(g) In case of 3 phase Y connected circuit total power is given by :
(i) $\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \phi$ watt
(ii) $\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \sin \phi$ watt
(iii) $3 V_{P} I_{P} \cos \phi$ watt
(iv) Both (i) and (iii)
2. (a) Determine the current through 600Ω resistance, Branch EF using Y- Δ transformation. $\quad 7 \times 2=14$

(b) State super position theorem. Find current I using super position theorem in the following circuit.
4Ω

3. (a) Compare primary and secondary cells. $7 \times 2=14$
(b) Explain construction, working and application of Nickel cadmium cells.
4. (a) If two current carrying conductor are placed in parallel then what will be force experienced by each conductor if : $7 \times 2=14$
(i) Both are carrying current in same direction
(ii) Both are carrying current in opposite direction. What will be magnitude of mutual force ? Derive it.
(b) An iron ring of cross-sectional area $6 \mathrm{~cm}^{2}$ wound with a wire of 100 turns has a saw cut of 2 mm . Calculate the magnetising current required to produce a magnetic flux of 0.1 m wb if mean length of manetic path is 30 cm and relative permeability of iron is 470 .
5. (a) What is magnetic hysteresis and hysteresis loop ? Also explain the importance of Hysteresis loop.
$7 \times 2=14$
(b) Compare electric and magnetic circuit.
6. (a) Show that current in a pure inductive circuit lags by an angle 90° from voltage.
(b) Calculate the value of form factor of a full wave rectified wave form.

$$
7 \times 2=14
$$

7. (a) Define power factor. Explain the concept of power triangle with the help of power factor.
(b) Calculate the capacitance of a condenser to be connected in series with $100 \mathrm{~V}, 80 \mathrm{~W}$ lamp to enable it to be used on a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply.
8. Write short notes on any four : $31 / 2 \times 4=14$
(a) Relation between line and phase voltage in Y connected 3-phase system
(b) Advantages of 3- ϕ system over 1- ϕ system .
(c) Series resonance.
(d) Mutual Induction.
(e) $Y-\Delta$ transformation of resistances.
(f) Core and maintenance of lead acid batteries.
