DIPLOMA IN ELECTRICAL ENGINEERING (DELVI)

Term-End Examination June, 2012

BIELE-005: INDUSTRIAL ELECTRONICS

Time: 2 hours Maximum Marks: 70

Note: (i) Question no.1 is compulsory(objective).

(ii) Attempt any four questions from rest of the questions.

(iii)Draw neat and clean circuit diagrams if any required

1. Attempt *all* objective type questions :

7x2=14

- (a) Power electronic equipments have very high efficiency because :
 - (i) the device always operative in active region.
 - (ii) the device never operative in active region.
 - (iii) devices traverse active region at high speed and stay at the two states of ON/OFF.
 - (iv) very efficient cooling.
- (b) Common emitter current-gain h_{FE} of a BJT is:
 - (i) Depends on collector emitter voltage v_{CE}
 - (ii) Depends on base emitter voltage v_{BE}
 - (iii) Dependent on collector current I_C
 - (iv) Always constant

- (c) TRIAC is a:
 - (i) Three layer two junction device
 - (ii) Four layer four Junction device
 - (iii) Four layer three junction device
 - (iv) Two layer one junction device
- (d) LASCR is a:
 - (i) vaccume device
 - (ii) unilateral device
 - (iii) bilateral device
 - (iv) none of these
- (e) A UJT exhibits negative resistance region :
 - (i) Before the peak point
 - (ii) Between peak and valley points
 - (iii) After the valley point
 - (iv) After the peak point
- (f) In its application an SUS behaves in the same way as:
 - (i) UJT

- (ii) SCR
- (iii) tunnel diode
- (iv) none of these
- (g) Generally for generating triggering pulses :
 - (i) UJT are used
 - (ii) PUT are used
 - (iii) UJT and PUT are required
 - (iv) none of these
- 2. (a) Explain static and switching characteristics of BJT. 7+7=14
 - (b) Explain now the characteristics of power transistor are normally specified by the manufacturers in terms of SOA.
- (a) Explain the constructional details of an SCR and draw the two transistor model of SCR.
 - (b) Enumerate the basic difference between a TRIAC and SCR. 7+7=14

- 4. (a) List and explain the names of the methods adopted for triggering a thyristor. 7+7=14
 - (b) Explain the circuit diagram and working of a PUT relaxation oscillator.
- 5. (a) With necessary waveforms and diagrams explain in detail for operation of three phase half wave controlled rectifier. 7+7=14
 - (b) Explain the operation of 3-phase half controlled bridge rectifier.
- 6. (a) Describe the working of single phase half wave controlled rectifier with RL load and freew heeling diode 7+7=14
 - (b) With neat sketch, describe the function of single phase half controlled bridge rectifier with resistive load. What will be the wave forms observed?
- 7. (a) Draw the symbols for the following triggering devices. 7+7=14

 (i) SCS (ii) SUS
 - 1) 5C3 (II) 5U5
 - (iii) SBS (iv) Shockley diode
 - (b) Explain the difference between half controlled bridge and a fully controlled bridge.
- 8. Write short notes on any four of the following.
 - 4x3.5=14
 - (a) IGBT construction and characteristics(b) SCR turn off methods
 - (c) Resistance firing circuit for SCR
 - (d) Capacitor firing circuit for SCR
 - (e) MCT's (MOS-controlled thyristor)
 - (f) RCT's (Reverse conducting thyristor)