# DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING (DECVI)/ ADVANCED LEVEL CERTIFICATE COURSE IN ELECTRONICS AND COMMUNICATION ENGINEERING (ACECVI)

## Term-End Examination 00400

### June, 2012

## **BIEL-028 : CIRCUITS AND NETWORKS**

Time : 2 hours

Maximum Marks : 70

**Note :** First question is **compulsory** and Attempt **any five** questions from 2 to 8, each question carry equal marks.

1. (a) For even function, the necessary condition is : 2x7=14

- (i) f(t) = -f(-t)
- (ii) f(t) = +f(-1)

(iii) 
$$f(t) = \frac{1}{f(-t)}$$

(iv) 
$$f(t) = -(t \pm T/2)$$

(b) The laplace transform of f(t) = t is given by :

(i) 
$$\frac{1}{S^2}$$
 (ii)  $\frac{1}{S}$ 

(iii) 
$$\frac{2}{S^3}$$
 (iv) S

#### **BIEL-028**

P.T.O.

(c) A two port network is symmetrical if :

(i) 
$$Z_{11}Z_{22} - Z_{12}Z_{21} = 1$$

(ii) 
$$AD - BC = 1$$

(iii) 
$$h_{11}h_{12} - h_{12}h_{21} = 1$$

(iv) 
$$y_{11}y_{22} - y_{12}y_{21} = 1$$



(e)

| Convolution            | of    | x(t+5)   | with | impulse |
|------------------------|-------|----------|------|---------|
| function $\delta(t-7)$ | ') is | equal to | :    |         |

| (i) | x(t-12) | (ii) | ) $x(t+12)$ | ) |
|-----|---------|------|-------------|---|
|-----|---------|------|-------------|---|

(iii) 
$$x(t-2)$$
 (iv)  $x(t+2)$ 

(f) The average value of the half-wave rectified sine wave of amplitude Am is :

(i) 
$$\frac{Am}{\pi}$$
 (ii)  $\frac{Am}{\sqrt{2}}$ 

(iii) 
$$\frac{Am}{2}$$
 (iv)  $\frac{2Am}{\pi}$ 

(g) In a two-port network containing linear bilateral passive circuit elements, which one of the following condition for Z Parameters would hold :

(i) 
$$Z_{11} = Z_{22}$$
 (ii)  $Z_{12}Z_{21} = Z_{11}Z_{12}$   
(iii)  $Z_{11}Z_{12} = Z_{22}Z_{21}$  (iv)  $Z_{12} = Z_{22}$ 

### BIEL-028

### 2. Attempt any two parts :

(a) Determine ABCD parameters for the network in fig. :



- (b) Discuss Norton theorem with the help of suitable example.
- (a) Explain Impedance transformation in resonance circuits.
  7x2=14
  - (b) Discuss super position theorem with example. How it is helpful in Network analysis.
- **4.** (a) Discuss the significance of pole and zero in **14** Network function.

(b) If 
$$F(s) = \frac{s(s+1)}{(s+4)(s^2+4s+Q)}$$
 find  $f(t)$  using **14**

the pole-zero diagram of the functions.

**BIEL-028** 

Ξ

3

5. (a) Determine the voltage across the  $10\Omega$  14 resistor using Nodal analysis in fig.



(b) Determine the current in Branch BD where 14 galvanometer is connected in fig.



6. Attempt any two parts :

7x2=14

(a) Draw the Thevenin's equivalent of the circuit given in and find the load current in  $2\Omega$  resistor fig.



(b) Discuss the maximum power transfer theorem and prove maximum power will be  $P = E^2/4R$ .

4

P.T.O.

(c) Determine current through  $5\Omega$  resistor using Norton theorem in fig.



7. (a) Determine the current through the Inductor 14 L for  $t \ge 0$  as a parallel RL circuit. The switch has been its position 1 for a long time and then moved to position 2 at t=0 circuit shown in fig.



- (b) Explain the series resonance in the circuit **14** also discuss the fig of merit.
- 8. Attempt *any two* for writing short notes : 7x2=14
  - (a) Hybrid parameters.
  - (b) Constant K-Type Low Pass Filter.
  - (c) T-type Attenuator
  - (d) Interconnection of two port Network.

#### BIEL-028