1) DIPLOMA IN COMPUTER SCIENCE AND ENGINEERING (BTCSVI)
 Term-End Examination
 June, 2012
 BICS-033 : NUMERICAL METHODS AND COMPUTATION

Time : 2 hours
Maximum Marks : 70
Note: Attempt Any Five Questions. Question No. 1 is Compulsory. Calculator is allowed.

1. (a) Data Errors is also known as representation error (True / False) $7 \times 2=14$
(b) A Non-Algebraic equation is called a transcendental equation (True / False)
(c) Divided difference are symmetric function of their arguments (True / False)
(d) Prove that $\nabla-\Delta=-\nabla \Delta$
(e) The Relation between E and ∇ is:
(i) $\mathrm{E}=1+\nabla$
(ii) $\mathrm{E}=1-\nabla$
(iii) $E \nabla=1$
(iv) All of above
(f) Shift operator E is defined as $\mathrm{E} f(x)=$
(i) $f(x)$
(ii) $f(x+h)$
(iii) $f(x-\mathrm{h})$
(iv) $f(x+x h)$
(g) The quantity true value approximate value is called:
(i) Algorithms
(ii) Percentage Error
(iii) Error
(iv) None of these
2. (a) Perform four iterations of bisection method 7 to obtain the smallest positive root of equation $f(x)=x^{3}-5 x+1=0$
(b) Evaluate $\sqrt{12}$ to four decimal places by 7 Newton's Raphson method.
3. (a) By Gauss's elimination method solve
$x+2 y+z=3$
$2 x+3 y+3 z=10$
$3 x-y+2 z=13$
(b) Apply Gauss - seidal iteration method 7
$20 x+y-2 z=10$
$3 x+20 y-z=-18$
$2 x-3 y+20 z=25$
4. Using Lagrange's Interpolation formula find $y(10) \quad 14$ from the following table.

x	5	6	9	11
y	12	13	14	16

5. Evaluate $\int_{0}^{10} \frac{\mathrm{~d} x}{1+x^{2}}$ by using $7 \times 2=14$
(a) Trapezoidal rule
(b) Simpson's $1 / 3$ rule
6. (a) What are the merits and demerits of Finite 7 Difference methods of Interpolation.
(b) By means of Newton's Divided difference 7 formula, find the value of $f(8)$.

x	4	5	7	10	11	13
$f(x)$	48	100	294	900	1210	2028

7. Using Taylor's series methods

Solve $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}-y$
$y(0)=1$ at $x=0.1,0.2,0.3$
8. Attempt any four of the following:
$3.5 \times 4=14$
(a) Secant method
(b) Linear regression
(c) Golden Section Search
(d) Linear programming
(e) Typex of Error
(f) Runge Kutta method for $2^{\text {nd }}$ order

