DIPLOMA IN COMPUTER SCIENCE AND
 TECHNOLOGY (DCSVI)/ADVANCED LEVEL CERTIFICATE COURSE IN CSE (ACCSVI)

Term-End Examination
June, 2012
BICS-029 : ALGORITHMS AND LOGIC DESIGN
Time : $\mathbf{2}$ Hours Maximum Marks : 70
Note: Attempt any five questions. and question number 1 is compulsory which is multiple choice questions.

1. Choose the correct answer from the four given alternatives.
(a) The best average behaviour as per time complexity is shown by :
(i) Quick sort
(ii) Merge sort
(iii) Heap sort
(iv) Insertion sort
(b) What is the maximum total number of nodes in a tree that has N levels? Note that the root is level (Zero) :
(i) $\quad 2^{2 n}$
(ii) $2^{\mathrm{N}+1}-1$
(iii) 2^{N}
(iv) $2^{N}-2 N$
(c) The average number of comparisons in 2 sequential search is :
(i) n^{2}
(ii) $\frac{\mathrm{n}(\mathrm{n}-1)}{2}$
(iii) $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
(iv) $\frac{\mathrm{n}+1}{2}$
(d) The average computing time of heap sort is :

2
(i) $\mathrm{O}\left(\mathrm{n}^{2}\right)$
(ii) $O\left(n \log _{n}\right)$
(iii) $O\left(\log _{n}\right)$
(iv) $\mathrm{O}\left(\mathrm{n}^{3}\right)$
(e) The worst case time complexity of insertion
sort is :
(i) $\mathrm{O}\left(\mathrm{n}^{2}\right)$
(ii) $O\left(\mathrm{n} \log _{\mathrm{n}}\right)$
(iii) $O\left(\mathrm{n}^{3}\right)$
(iv) $\mathrm{O}\left(\log _{n}\right)$
(f) Which of the following algorithm design
techniques is used in finding all pair shartest distance in a graph ?
(i) Dynamic programming
(ii) Back tracking
(iii) Greedy method
(iv) Divide and Conquer
(g) What is the name of output code from either a compilar or an assembler?
(i) Source code
(ii) Object code
(iii) Op-code
(iv) Psuedo code
2. (a) What do you mean by analysis of an 7 algorithm ? Write an algorithm for binary search tree and analyse it.
(b) Differentiate between straight sequential 7 search and binary search technique with example.
3. (a) Write divide and conquer approach for binary search and calculate it's average time complexity.
(b) Explain all the stages of Program 7 Development Life Cycle.
4. (a) What is the complexity? Write the types of 7 complexity and also explain Big-oh and Big-omega notations.
(b) Solve the Recurrence relation using iteration 7 method.
$T(n)=K . T\left(\frac{n}{k}\right)+n^{2}$
Where $\mathrm{T}=1$ and K is any constant
5. (a) Draw a flow chart to arrange N-numbers in descending order.
(b) Write an algorithm for quick sort. Analyse7 the time complexity of your algorithm.
6. (a) Write an algorithm for deleting duplicate7 numbers from a leaner array.
(b) Describe in brief the garbage collection and7 compaction.
7. (a) Write Pseudo code for selection sort.7
(b) Write an algorithms for merge sort. Sort the 7 following values as per your algorithm 2,3,7,4,6,1,9,5 .
8. Write short notes on any four : $4 \times 31 / 2=14$
(a) Shell sort
(b) Bucket sort
(c) Recursive algorithm
(d) Component of Flow Chart
(e) Algorithm validation
(f) Bubble sort

