B.Tech. IN MECHANICAL ENGINEERING /
 B.Tech. IN CIVIL ENGINEERING

Term-End Examination
June, 2012

BICE-027 : MATHEMATICS III

Time : 3 hours
Maximum Marks : 70
Note: All the questions are to be answered in English Language only. All the questions carry equal marks. Attempt any seven questions.

1. Expand the function: 10

$$
\begin{aligned}
f(x) & =\frac{1}{4}-x, \text { if } 0<x<\frac{1}{2} \\
& =x-\frac{3}{4}, \text { if } \frac{1}{2}<x<1
\end{aligned}
$$

as the Fourier series of Sine terms.
2. Prove that for $0<x<\pi$,
$x(\pi-x)=\frac{\pi^{2}}{6}-\left(\frac{\cos 2 x}{1^{2}}+\frac{\cos 4 x}{2^{2}}+\frac{\cos 6 x}{3^{2}}+\ldots \ldots \ldots.\right)$
and deduce by Parseval's formula $\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$
3. Find the inverse Fourier transform of $f(s)=\mathrm{e}^{-|s| y,} \quad 10$ where $Y \in[-\infty, \infty]$.
4. Find $f(x)$ if its Cosine Transform is $\frac{1}{1+S^{2}}$ 10
5. Solve : $\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial x \partial y}+\frac{\partial}{\partial y}-1\right) Z=\cos (x+2 y)+e^{\prime \prime}$. 10

Where symbols have their usual meaning.
6. Obtain the solution of the wave equation $\mathbf{1 0}$ $\frac{\partial^{2} y}{\partial t^{2}}=C^{2} \frac{\partial^{2} y}{\partial x^{2}}$. Using the method of separation of variables.
7. Find the solution of $\frac{\partial^{2} u}{\partial x^{2}}=h^{2} \frac{\partial u}{\partial t}$ for which 10
$\mathrm{u}(0, \mathrm{t})=\mathrm{u}(l, \mathrm{t})=0 \mathrm{u}(x, 0)=\operatorname{Sin}\left(\frac{\pi x}{l}\right)$ by method of variables separable.
8. Obtain the steady state temperature distribution in a rectangular metal plate of length ' a ' and width ' b ', the sides of which are kept at temperature $0^{\circ} \mathrm{C}$. the lower edge is kept at $100^{\circ} \mathrm{C}$ and the upper edge kept insulated.
9. Find the deflection $\mathrm{u}(x, y, t)$ of the square $\mathbf{1 0}$ membrane with $\mathrm{a}=\mathrm{b}=1$, and $\mathrm{c}=1$, if the initial veloctiy is zero and the initial deflection is :
$f(x, y)=\mathrm{A} \operatorname{Sin}(\pi x) . \operatorname{Sin}(2 x y)$.
10. Attempt any two questions:
(a) Solve : $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=\operatorname{Cos} m x \cos n y$.

Where symbols have their usual meaning.
(b) Solve : $Z(x p-y q)=y^{2}-x^{2}$. Where p and q have their usual meaning.
(c) Solve : $\frac{\partial^{2} z}{\partial x^{2}}-4 \frac{\partial^{2} z}{\partial x \partial y}+4 \frac{\partial^{2} z}{\partial y^{2}}+\frac{\partial z}{\partial x}-2 \frac{\partial z}{\partial y}=\mathrm{e}^{x+y}$

Where symbols have their usual meaning.

